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Introducing quasiparticle anisotropy in graphene via uniaxial strain has a profound effect on
the polarization charge density induced by external impurities, both Coulomb and short-range.
In particular, the charge distribution induced by a Coulomb impurity exhibits a power law tail
modulated by a strain-dependent admixture of angular harmonics. The appearance of distributed
charge is in sharp contrast to the response in pristine/isotropic graphene, where for subcritical
impurities the polarization charge is fully localized at the impurity position. It is also interesting to
note that our results are obtained strictly at zero chemical potential, and the behavior is distinct
from the familiar Friedel oscillations observed at finite chemical potential. We find that over a wide
range of strain, the d-wave symmetry is dominant. The presence of Dirac cone tilt, relevant to
some 2D materials beyond graphene, can also substantially affect the induced charge distribution.
Finally we consider impurities with short range potentials, and study the effect of strain on the
charge response. Our results were obtained in the continuum via perturbation theory valid for weak
(subcritical) potentials, and supported by numerical lattice simulations based on density functional
theory.

I. INTRODUCTION

External impurities in graphene [1] and other two-
dimensional (2D) electronic systems provide an impor-
tant probe into the underlying Dirac quasiparticle struc-
ture, and allow for the study of effects not present in con-
ventional materials. In the case of external Coulomb im-
purities, two distinct regimes can be identified depending
on the impurity strength Zα [2–7]. For weak impurities
in neutral graphene, in the so-called subcritical regime
(Zα < 1/2) that is accessible perturbatively, the vacuum
polarization charge resides on the lattice scale (i.e. in

the continuum limit n(r) = Q̃δ(r)). On the other hand,
strong impurities in the supercritical regime (Zα > 1/2)
lead to “vacuum charging” characterized by resonances
in the quasiparticle density of states as well as the ap-
pearance of a distributed component in the polarization
charge n(r) = Q̃δ(r) + A/r2. These findings have stim-
ulated extensive experimental studies via scanning tun-
neling microscopy, yielding results consistent with theo-
retical predictions[8–11].

In this work we investigate how uniaxial strain and
Dirac cone tilt affect the polarization charge distribu-
tion induced by subcritical impurities in charge neutral
graphene. The effect of uniaxial strain on graphene’s
electronic structure is well-known [12–17]. Under weak
strain the Dirac cones become anisotropic, whereas very
strong strain (in any direction but armchair) leads to
a topological transition towards an insulating state via
Dirac cone merger. For simplicity, we focus on uniaxial
strain along the armchair direction in our calculations,
since the system remains gapless under a wide range of
strain values (ranging from several percent, generally ac-
cessible experimentally, to tens of percent, which will be
used to illustrate our theoretical results). However, we
also briefly consider the case of zigzag strain, and it is ev-
ident that the behavior predicted by the armchair model
is quite general for strain along any direction, apart from
at extreme strains approaching the transition. Another

way to break rotational symmetry in momentum space
is Dirac cone tilt. This can be realized in deformed
graphene, and is naturally present in various 2D materi-
als [13, 18–21]. Because anisotropy modifies graphene’s
polarization properties, it generally affects a variety of
phenomena related to interactions with external atoms
such as Kondo impurities, van der Waals interactions
with neutral atoms, etc. [22–25].

For Coulomb impurities we generally find that in the
weak coupling regime (Zα ≪ 1), the presence of strain
and/or tilt induced anisotropy leads to the emergence
of a distributed polarization charge tail (in addition to

the local response), n(r) = Q̃δ(r) + A(ϕ)/r2. This is
in contrast to the case of isotropic graphene, where only
a localized charge (Q̃) is present. We analyze in detail
the symmetries and strain dependence of the functions
Q̃, A(ϕ), using the conventional continuum random phase
approximation (RPA) for the polarization charge [26, 27],
supplemented by lattice density functional theory (DFT)
calculations. We find that the function A(ϕ) is oscilla-
tory and the total induced charge is determined by the
local component Q̃ (i.e. the net charge carried by the dis-
tributed tail is zero,

∫
dϕA(ϕ) = 0). We emphasize that

our calculations were performed for neutral graphene, at
zero chemical potential µ = 0. At finite chemical poten-
tial µ ̸= 0 both strained and pristine graphene exhibit
Friedel oscillations [21, 28, 29] with a cubic power law
tail. It is particularly interesting that in the strict limit
µ = 0, the radial Friedel oscillations are replaced by the
more pronounced quadratic tail with a characteristic an-
gular pattern. Finally, we extend previous work on short-
range impurities [30, 31] to include strain, and find that
it produces oscillations in the cubic power law tail.

The rest of the paper is organized as follows. In Sec-
tion II we summarize the main equations pertaining to
graphene’s electronic structure and polarization proper-
ties in the presence of uniaxial strain. In Section III we
present our results for the external Coulomb impurity
problem, including in-plane and off-plane impurities atop
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uniaxially strained graphene. Section IV discusses the
polarization patterns for short-range impurities. Section
V studies the effect of Dirac cone tilt on the Coulomb
impurity response. Section VI is a brief study of the
Coulomb impurity response under zigzag strain, and Sec-
tion VII contains our conclusions. Appendices A, B, C, D
summarize some technical details, including useful func-
tions and integrals, and a brief discussion of Friedel os-
cillations in anisotropic systems. Throughout the paper
we set ℏ = 1.

II. PROBLEM FORMULATION: UNIAXIAL
STRAIN

We study how anisotropy in the Dirac spectrum of
graphene modifies its electrostatic response to charged
impurities in, or proximate to, the plane. We assume
graphene at the neutrality point, i.e. the chemical po-
tential µ = 0 throughout the main text. The spectrum
of Dirac fermions with different velocities (vx, vy) along
the two directions has the form

ε(p) = ±
√
v2xp

2
x + v2yp

2
y, (1)

and we quantify the anisotropy via v ≡ vy
vx

. It may be

assumed without loss of generality that v ≤ 1. We con-
sider a model where strain δ is applied in the armchair
direction (y-axis). In this case the dependence of vx, vy
on strain can be extracted from numerical data [12] to
be

v = v(δ) =
vg(1− 2.23δ)

vg(1 + 0.37δ)
=

vy(δ)

vx(δ)
, (2)

where vg is the velocity in unstrained graphene. It should
be noted that experimentally strain of several percent is
readily achievable [13, 15] while in principle, it is known
that graphene can sustain much higher strains. Thus we
will employ strain as a theoretical parameter, and allow
it to take on a wide range of values, in order to illustrate
novel phenomena present in the impurity response. For
the case of zigzag strain, considered in Section VI, the
anisotropy becomes strongly non-linear near the topo-
logical transition, and will be extracted for specific strain
values from the numerical data of Ref. [12].

In linear response, the induced charge density is

n(q) =
Vext(q)Π(q, 0)

1− Ve-e(q)Π(q, 0)
, (3)

where we use the static polarization function Π(q, 0) for
anisotropic Dirac fermions, and Vext, Ve-e are the po-
tential energies associated with the external impurity
and the internal electron-electron interactions respec-
tively. The term in the denominator accounts for the
RPA screening due to electron interactions in graphene.

The exact expression for the polarization is easily
found to be (N = 4, taking into account the valley and
spin degrees of freedom):

Π(q, ω) = − N

16vxvy

v2xq
2
x + v2yq

2
y√

v2xq
2
x + v2yq

2
y − ω2

, (4)

and

Ve-e(q) = V (q) =
2πe2

κq
(5)

is the Fourier transform of the Coulomb interaction be-
tween electron pairs, where κ is the effective dielectric
constant due to the potential presence of a substrate.
We define a dimensionless coupling constant

α = α(δ) =
e2

κvx
=

e2

κvg(1 + 0.37δ)
=

2.2

κ(1 + 0.37δ)
(6)

that controls the strength of Coulomb interactions in
strained graphene.

III. COULOMB IMPURITY

A. In-Plane

From now on we measure the induced charge density
n in units of the positive charge |e|, i.e. we calculate and
plot the quantity n/|e|, and for simplicity we set |e| = 1
in all formulas.
For an external in plane Coulomb impurity with charge

Z|e|, in Eq. (3) we have:

Vext(q) = Z
2πe2

κq
(7)
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FIG. 1. The coefficients D,G, I, L,N , appearing in Eq. (11),
as a function of strain δ for κ = 2.5.

In Equations (5) and (7), the effective dielectric con-
stant κ = (1 + ϵs)/2 takes into account the presence
of a substrate with dielectric constant ϵs supporting the
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graphene sheet, and air/vacuum above. Some additional
considerations are presented in Appendix A. For example
a typical substrate is SiO2, for which κ ≈ 2.5 (ϵs ≈ 4);
this will be used as the representative value in all of our
plots.

Transforming Eq. (3) to real space we find the induced
charge density:

n(r) = −Zα
1

8πv

∫
d2k eik·r

√
cos2 θ + v2 sin2 θ

1 + π
2
α
v

√
cos2 θ + v2 sin2 θ

,

(8)
where θ is the polar angle of k.

It is easy to see from Eq. (8) that one can extract the
results by use of the identity

eik.r = J0(kr) + 2

∞∑
m=1

imJm(kr) cosm(θ − ϕ), (9)

where ϕ is the polar angle of r. By parity, we find that
the only terms that contribute to the integral are

J0(kr) + 2
∑

m=even

imJm(kr) cos(mθ) cos(mϕ), (10)

which is to be substituted back into Eq. (8).
It is clear that the first term alone produces the delta

function response while all others contribute to the dis-
tributed tail.

Evaluation of the integral yields

n(r)

Zα
= −π

2
Q(δ)δ(r) +

1

r2
{D(δ) cos 2ϕ

+G(δ) cos 4ϕ+ I(δ) cos 6ϕ

+ L(δ) cos 8ϕ+N(δ) cos 10ϕ+ . . .} , (11)

where the coefficients Q,D,G, ... depend on strain and
are calculated in Appendix B. This is a perturbative first
order result (weak potential) that is formally valid in the
limit Zα ≪ 1.

An important feature of Eq. (11) is that strain has led
to the appearance of an oscillatory distributed charge tail
∼ 1/r2, in addition to the purely local response found in
pristine graphene. Naturally, the coefficients D,G, . . .
vanish at zero strain and we may recover the isotropic
result. Notice that the polarization charge (integrated
charge density) carried by the tail is zero and thus the
total polarization charge is determined by the local com-

ponent
∫
d2rn(r)

Zα = −π
2Q(δ). The partial wave expan-

sion converges quite nicely, as evidenced by the behavior
of the coefficients shown in Figure 1. We have omitted
Q(δ) for clarity since it is an order of magnitude greater
than the other terms, but the general dependence is that
it steadily grows with strain. Figure 2 shows contour
plots of the distributed tail of the induced charge for dif-
ferent values of strain. Clearly the d-wave angular com-
ponent is dominant, but note how increased anisotropy
more prominently admixes the higher harmonics. For
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FIG. 2. Contour plots of the distributed induced charge

ñc(r) =
n(r)

Zα
+

π

2
Q(δ) δ(r) for (a) δ = 0.05, (b) δ = 0.15,

and (c) δ = 0.25. The coordinates r = (x, y) are in arbitrary
units as there is no characteristic length scale in the problem.
Subsequently, the charge density is measured in the reciprocal
of the chosen units squared.
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FIG. 3. 3D density plot of ñc(r) at δ = 0.05, in arbitrary
units as in Figure 2.

the benefit of the reader, we also include a 3D density
plot at an achievable strain of δ = 0.05 in Figure 3. The
strength of the response sensitively depends upon the val-
ues of δ and κ. Generally speaking, higher strains induce
more variation and larger amplitudes in the charge den-
sity. However, the influence of κ is more subtle: with
increasing κ the screening from the graphene electrons is
reduced (α is smaller), which considerably increases the
values of all coefficients Q,D,G, . . . ; on the other hand,
the dimensionless coupling Zα also decreases, which re-
duces the magnitude of the density variations and also
improves the validity of the perturbative approach.

B. Distance z from the Plane

For a Coulomb impurity at a finite distance z from the
plane, Vext(r) = Ze2/(κ

√
r2 + z2), we have the modified

Fourier transform of the external potential:

Vext(q) = Z
2πe2e−qz

κq
. (12)

We perform the calculation again with this simple
modification, measuring all distances in units of the only
length-scale z. The final result is:

n(r)z2

Zα
= −Q(δ)

4

1

[1 + (r/z)2]3/2

+
1

(r/z)2

{
D(δ)

2
f2(r/z) cos 2ϕ +

G(δ)

4
f4(r/z) cos 4ϕ

+
I(δ)

6
f6(r/z) cos 6ϕ+

L(δ)

8
f8(r/z) cos 8ϕ

+
N(δ)

10
f10(r/z) cos 10ϕ

}
. (13)

The functions f2, f4, . . . are defined in Appendix B. Note
that the central δ(r) peak has been regularized.
By taking the limit of Eq. (13) as z/r → 0 and using

lim
z/r→0

1

z2[1 + (r/z)2]3/2
= 2πδ(r),

lim
z/r→0

fn(r/z) = n,

we recover the in plane impurity result Eq.(11).
Our results are summarized in Fig. 4. The main be-

havior, including the angular symmetry of the charge re-
sponse, is broadly similar to the case of the in-plane im-
purity, apart from an overall smearing and suppression
of the sharp features.

C. DFT Simulation

Density functional theory (DFT) calculations in the
local-spin-density (LSD) approximation were performed
using the Gaussian and plane waves method (GPW) as
implemented in the Quickstep[32] module of the CP2K
software package [33]. The PBEsol [34] generalized gra-
dient approximation (GGA), which is based on the PBE
(Perdew–Burke–Ernzerhof) [35] GGA and optimized for
solids and surfaces, was used for the exchange–correlation
functional in the DFT calculations. Wavefunction opti-
mization at each self-consistent field (SCF) step was per-
formed with the orbital transformation method [36] and
direct inversion in the iterative subspace method. The
optimized double-zeta basis set (DZVP-MOLOPT) was
used together with the Goedecker–Teter–Hutter (GTH)
pseudopotentials [37–40]. Graphene was simulated as a
periodic sheet consisting of 14 × 16 unit cells within a
rectangular cell with a vacuum region of 40 Å. The sys-
tem is periodic in the plane of the sheet (x-y plane), but
not periodic in z. For strained configurations, the sys-
tem was scaled along the x and y dimensions according
to the strain value and the corresponding Poisson ratio
(0.165). The Martyna-Tuckerman solver was used for the
electrostatic Poisson calculation. An external Coulomb
potential of a positive (single) point charge was added at
a distance 0.01a (a = 1.42 Å) above the graphene sheet to
compute the effect of the Coulomb impurity. The Quick-
step multi-grid was run with a cutoff energy (CUTOFF)
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FIG. 4. Density plots in coordinates (x/z, y/z). (a) n(r)z2

Zα
at δ = 0.05. On this scale the density is completely dominated

by the azimuthally symmetric s-wave component which is present in both unstrained and strained graphene. (b) Plot of

ñop(r) = n(r)z2

Zα
+ Q(δ)

4
1

[1+(r/z)2]3/2
, which is the angularly dependent density induced by strain. The d-wave symmetry is

dominant, as in the case of the in-plane impurity.

of 400 Ry and a relative cutoff (REL CUTOFF) of 40
Ry.

The electron density changes due to the Coulomb im-
purity was obtained by subtracting simulation results
without external potential from data including the po-
tential. Our main goal is to demonstrate the angular ef-
fect of uniaxial strain on graphene and for that purpose
we have excluded the first (local) term in Eqs. (11, 13).
We have normalized the isotropic peak of the unstrained
data and subtracted it from the strained data.

The DFT results are presented in Figure 5. Notice
that the behavior found from the DFT simulations shows
a remarkable similarity to our previous analysis (which
was based on a continuum formulation within linear re-
sponse theory). In particular, the most important fea-
ture is the angular variation near the origin (Figure 5(c))
which clearly exhibits a dominant d-wave like peak and
valley behavior as in Figures 2, 4.

IV. SHORT-RANGE IMPURITY

For an impurity with an interaction range on the scale
of graphene’s lattice spacing, one can take:

Vext(r) = Uδ(r). (14)

This problem has been studied in detail for isotropic
graphene [30, 31]. It exhibits a supercritical regime
(which requires short distance regularization of the po-
tential), but we will only consider the weak coupling,
subcritical behavior, and more precisely how it is modi-
fied by strain.

Using the linear response approach, as previously ap-
plied to the Coulomb impurity problem, we have:

n(r) = −U
1

4(2π)2vy

∫
d2keik.r

|k|
√

cos2 θ + v2 sin2 θ

1 + π
2
α
v

√
cos2 θ + v2 sin2 θ

.

(15)
This can be represented as

n(r) =
1

r3
U

8πvy
F (ϕ), (16)

where the function F (ϕ) is computed via the partial wave
expansion with the result:

F (ϕ) = Qs(δ) +Ds(δ) cos 2ϕ+Gs(δ) cos 4ϕ+ Is(δ) cos 6ϕ

+Ls(δ) cos 8ϕ+Ns(δ) cos 10ϕ. (17)

The coefficients Qs, Ds, ... are defined in Appendix C.
The “s” label denotes short-range.
The primary difference from the in plane Coulomb

impurity is that here the entire induced charge is dis-
tributed, and the decay ∼ 1/r3 is more rapid. Without
strain the function F (ϕ) = constant = Qs while strain
admixes waves with higher symmetries. This is clear from
Fig. 6 where all the coefficients are plotted as a function
of strain. Note that due to the zero-range nature of the
potential, Eq. (16) has a non-integrable singularity at
r = 0 and the total polarization charge diverges. Thus
Eq. (16) is only applicable at finite distances beyond a
short length scale a, which is expected to be on the order
of the lattice spacing. The result is relevant for distances
r > a, and the validity of the perturbative expansion
is governed by the condition U

vya
≪ 1, where U/(vya)

is the dimensionless coupling parameter. Thus overall
r > a ≫ U/vy.
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FIG. 5. (a) Two-dimensional map of the polarization charge density around a Coulomb impurity, obtained by DFT. Panel
(b) shows the size of the graphene sheet in our simulations and the area window (in red) plotted in panel (a). Distances are
measured in Å. Panel (c) is the corresponding 3D view of the polarization charge density near the impurity position for strain
δ = 0.2. To exclude the isotropic peak and extract the oscillatory tail, we mapped the strained data to the original size of
the graphene sheet before subtracting the normalized unstrained data. Thus the figure shows only the distributed, angularly
dependent component of the charge density.
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FIG. 6. The coefficients Qs, Ds, Gs, Is, Js,Ks, appearing in
Eq. (17), as a function of strain δ for κ = 2.5. Explicit for-
mulas are presented in Appendix C.

Figure 7 shows the variation of the function F (ϕ) for
various strains, and Figure 8 shows the the density profile
n(r) with the full dependence ∼ 1/r3 included. For small
strain the rapid decay fully obscures the angular varia-

tion, but we may easily observe it by plotting n(r)r3. We
reach the overall conclusion that the angular dependence
for a short range impurity is more complex than in the
Coulomb case, especially for moderate and high strain,
and that can be traced to the behavior shown in Fig-
ure 6. The oscillatory terms are several times larger and
more evenly weighted, and peculiarly, the isotropic Qs(δ)
component is a decreasing function of strain. On the
other hand the angular oscillation is concomitant with
the rather fast 1/r3 decay which makes it somewhat less
detectable. Note that the counterintuitive antiscreening
sign of the polarization charge density (Eq. (16)) is an
artifact of the delta function potential. Upon regular-
ization, one finds that the expected screening charge ap-
pears at distances smaller than the characteristic short-
distance regularization scale, and the total charge con-
tained in the distribution is zero. This model may be
realized as a point impurity substituted into a graphene
lattice site instead of a carbon atom.
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FIG. 7. Contour plots of the function F (ϕ) ∼ n(r)r3 for (a) δ = 0.05, (b) δ = 0.15, (c) δ = 0.25.
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FIG. 8. Evolution of the full density profile n(r) ∼ F (ϕ)/r3 for (a) δ = 0.05, (b) δ = 0.15, (c) δ = 0.25. Keeping in mind
Eq. (16) and restoring the dimensional quantities, the coordinates are measured in units of the characteristic length U/vy, i.e.
r → r/(U/vy), while the density n(r) is in units of v2y/(8πU

2).

V. EFFECT OF DIRAC CONE TILT ON THE
COULOMB IMPURITY RESPONSE

We also study the effect of Dirac cone tilt in addition to
the strain-induced anisotropy in the Coulomb case. This
can manifest in a variety of materials beyond strained
graphene [18–21]. In this case the Hamiltonian has the
structure

Ĥ = vxkxσ̂x + vykyσ̂y + tvykyσ̂0, (18)

where the dimensionless parameter t quantifies the degree
of cone tilt. The polarization is calculated to be:

Π(q, ω = 0) = − N

16vxvy

v2xq
2
x + v2yq

2
y√

v2xq
2
x + v2y(1− t2)q2y

. (19)

Note that the range of tilt must be restricted to t < 1
since a change of band structure occurs at t = 1 via a

Lifshitz transition, whereby the Fermi surface topology
changes and nodal lines appear in the spectrum. The
previously derived formulas in Section IIIA remain the
same with the substitution

ε(θ) → ε̃(θ) =

√
cos2 θ + v2 sin2 θ

1 + π
2
α
v

√
cos2 θ + v2(1− t2) sin2 θ

, (20)

where the function ε(θ) is defined in Eq. (B2), and the
corresponding modified coefficients in Eq. (11) become:

Q(δ), D(δ), . . . → Qt(δ, t), Dt(δ, t), . . . . (21)

As an example of the relevance of tilt, we look to a
member of the borophene family (a 2D boron crystal),
for which the naturally occuring parameters are [20, 21]:
v = vy/vx = 0.8, t = 0.46. We will also consider larger
values of tilt to study its effect more clearly. It has been
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FIG. 9. Distributed charge tail defined as in Fig. 2, for (a) values relevant to borophene, namely v = vy/vx = 0.8 (δ = 0.079), t =
0.46. The d-wave pattern is dominant, similarly to the response under strain alone. (b) For v = vy/vx = 0.8, t = 0.9, where
we have artificially considered a much larger tilt parameter to observe the effects more clearly. Notice how strong tilt reflects
the polarization pattern across the x-y plane. Coordinates are in arbitrary units, similarly to Fig. 2.
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FIG. 10. Plots of the modified coefficients Dt(δ, t), Gt(δ, t), . . . appearing in Eq. (11). (a) To isolate the effect of tilt, we plot
Dt(0, t), Gt(0, t), . . . . (b) Plot of Dt(δ, 0.46), Gt(δ, 0.46), . . . , whereby we fix t at the naturally occurring value in borophene.
The competition between the effects of strain δ and tilt t is clear.

suggested [41] that t may be controlled in borophene by
the substitution of carbon atoms into specific lattice sites.

The results are presented in Figure 9. We find that
there is a competition between the effects of strain and
tilt in the sense that they favor opposite orientations of
the dominant d-wave pattern. For the chosen value of
δ ≈ 0.1, strain produces the primary effect for t ≲ 0.5,
as shown in Figure 9(a), and tilt has a minor influence.
When tilt plays the primary role (Figure 9(b) where
t = 0.9) the d-wave pattern experiences axis inversion.
This can be more precisely understood from the behav-
ior of the coefficients exhibited in Figure 10. It is evident

from Figure 10(a), where we plot Dt(0, t), Gt(0, t), . . . ,
that tilt alone generates a distributed tail, but all the
angular oscillations are opposite in sign to those induced
by strain. However, as in the response under strain alone,
the local componentQt(0, t) is a positive, increasing func-
tion of t, and an order of magnitude greater than the
oscillating terms. The competition between the effects
of the two parameters can be distinctly seen in Figure
10(b), where we show the strain dependence at a fixed
value of t = 0.46.
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FIG. 11. Contour plots of the distributed charge density ñc(r)
(as defined in Figure 2) under large zigzag (y-axis) strains
approaching the transition. (a) |δ − δc| ≈ 0.02 (v ≈ 0.2), (b)
|δ − δc| ≈ 0.01 (v ≈ 0.08).

VI. UNIAXIAL STRAIN IN THE ZIGZAG
DIRECTION

For completeness, we briefly discuss the in-plane
Coulomb impurity response in uniaxially strained
graphene along the zigzag direction. The relevant def-
initions and equations in Sections II,III, and Appendix
B remain the same if we rotate the coordinate axes such
that the x-axis is now the armchair direction and the y-
axis is the zigzag direction. We adopt this convention
throughout this section and in all accompanying figures.
It is known [18] that under strong enough zigzag strain,
graphene approaches a Lifshitz transition characterized
by a merger of the Dirac cones and emergence of a semi-
Dirac spectrum at the critical point. For small δ, the
velocities are slowly varying linear functions, and this
can be shown to be true more generally [15] for any arbi-
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FIG. 12. The coefficients in Eq. (11) as a function of the
anisotropy v = vy/vx for the case of zigzag strain.

trary direction of strain. Thus in this regime we expect
to see the same behavior as in the armchair case. For
strain in the zigzag direction, the linear small δ behavior
extends to δ ≈ 0.2, producing density patterns virtually
identical to the armchair direction. However, as strain
increases towards the critical value δc ≈ 0.26 [12], vy(δ)
decreases non-linearly and eventually vanishes, marking
the appearance of massive quasiparticles at the transi-
tion. (We note that the critical point δc ≈ 0.26 [12] is
slightly larger than the one quoted in [14], δc ≈ 0.23.)

In contrast to the milder behavior shown in Eq. (2),
we now encounter (using the data from Ref. [12]) much
stronger anisotropy, as quantified by smaller v, on the
approach to criticality. This causes a dramatic change
in the charge response, as can be seen in Figure 11. At
|δ − δc| ≈ 0.02 (v ≈ 0.2), the distribution is still d-wave-
like but is heavily modulated by higher harmonics; and
at |δ− δc| ≈ 0.01 (v ≈ 0.08) the signature d-wave charac-
ter is gone altogether and higher symmetry terms become
dominant. This can be more clearly understood from the
plot of the coefficients as a function of v shown in Figure
12 (in this plot we use an average value of α(δ), since
it only depends on the slowly-varying velocity in the di-
rection perpendicular to strain). As v → 0 (maximum
anisotropy) every term reaches a maximum, in order of
increasing frequency, and starts to decay in such a way
that each harmonic has a window where it is the lead-
ing component before it is overtaken by the next term.
The convergence of the partial wave expansion no longer
holds in this regime, and in principle we must retain all
terms in Eq. (11) as v tends to zero. Note that this is
not problematic, since our model is not valid for v arbi-
trarily close to zero. There is a crossover at which the
behavior of the system is now described by weakly inter-
acting quasi-1D chains, and the 2D Dirac Hamiltonian
no longer captures the correct physics. We emphasize
that the leading d-wave behavior persists up to values of
δ very close to the transition, and this is consistent with
our claim about the generality of the results in Section
III.
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VII. SUMMARY AND DISCUSSION

In this paper we have studied the effects of uniaxial
strain and Dirac cone tilt on the vacuum polarization
charge induced by subcritical impurities in charge neu-
tral graphene. In the case of the Coulomb impurity, the
anisotropy produces an unconventional distributed tail
∼ 1/r2 in addition to the standard lattice-scale response
found in pristine graphene. It has been established else-
where that a variety of long range tails can also be gen-
erated in the subcritical regime by including additional
interaction effects or introducing a gap, and are plainly
present in the supercritical regime [4]. In the current
work we find that the tail exhibits angular oscillations
and carries zero net screening charge, in contrast to the
cases mentioned above. Our results show that the d-wave
symmetry is clearly dominant in a wide range of strain
values. Stronger anisotropy – achieved via increasing
strain and/or tilt – promotes the admixture of higher har-
monics, and produces a more pronounced pattern over-
all. Thus experimental measurement of the polarization
charge tail on the angstrom scale and beyond, accessible
via scanning tunneling microscopy [8–11], may serve as
a probe of the degree of mechanical strain or electronic
cone tilt present in a sample. For example, experiments
have successfully detected the presence of supercritical
impurity effects. We also note that the subcritical (per-
turbative) regime should in principle be more amenable
to laboratory conditions given that the coupling α is
suppressed by the presence of dielectric substrates and
electron-electron interactions. In addition, based on the
results of Section III B, the spatial extent of the angular
polarization pattern can potentially be controlled by the
impurity distance from the graphene plane.

It is important to note that our results were obtained
at the charge neutrality point (zero chemical potential).
The oscillatory behavior induced by strain and/or tilt is
drastically different from the usual Friedel oscillations
at finite µ, briefly discussed in Appendix D. The ra-
dial Friedel oscillations occur on the length-scale 1/kF ∼
vx/|µ| and decay as a cubic power law [21, 28, 29], in con-
trast to the angular oscillations we find at strictly zero
chemical potential where n ∼ 1/r2 with no characteristic
length scale.

In the case of the short range impurity potential the
effect is less profound, and the isotropic ∼ 1/r3 response
is simply modified by angular oscillations. We again find
that increasing strain favors the mixing of higher sym-
metries. The zero-range nature of the external poten-
tial leads to artifacts in the polarization charge density,
namely a non-integrable singularity at the origin, and a
counterintuitive antiscreening sign. These issues are re-
solved by short-distance regularization of the delta func-
tion potential.

In our calculations we have mainly focused on a spe-
cific model based on armchair uniaxial strain, but we
emphasize that the overall behavior is quite general and
would appear for strain in any direction, with the dif-

ference manifesting in the details of the charge polariza-
tion patterns. This is supported by the results of Section
VI, where we study the Coulomb impurity response un-
der zigzag strain, and find that we must consider strains
extremely close to the topological transition to find a
departure from the signature d-wave character. In this
regime we do indeed find richer angular variation in the
charge density, but it only appears in a small window
very close to the transition where the accuracy of the 2D
model starts to fail and the system is better described by
weakly interacting quasi-1D chains.
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Appendix A: Impurity Response with Substrate

It is known that correctly taking into account the elec-
trostatics of the substrate-graphene-air/vacuum struc-
ture gives the following form for the induced charge
around a Coulomb impurity [29, 42, 43]

n(r) = Z|e|
∫

d2k

(2π)2
eik·r

{
1

E(k)
− 1

}
, (A1)

where E(k) = κ−V0(k)Π(k). Here V0(k) = 2πe2/k is the
bare Coulomb potential and κ = (1+ϵs)/2 is the effective
dielectric constant. V (k) = V0(k)/κ is the dielectrically
screened potential. The terms cam be rearranged in the
following way:

1

E(k)
− 1 =

V (k)Π(k)

1− V (k)Π(k)
+

(1− κ)/κ

1− V (k)Π(k)

=
V (k)Π(k)

κ{1− V (k)Π(k)}
+ (1− κ)/κ, (A2)

which implies that the widely used “effective” way of
treating the substrate, implicit in the RPA Equations (3),
(5), (7), somewhat underestimates the localized charge
contribution due to the term (1−κ)/κ = (1−ϵs)/(1+ϵs),
while it overestimates the distributed tail by a factor of κ.
For example for κ = 2.5 we have (1−κ)/κ = −0.6 leading
to small shifts in the induced density scale (unimportant
from the point of view of the present work.)

Appendix B: Coulomb Impurity

The following integrals and functions appear in the
main text of the Section discussing in plane impurity.

∫ ∞

0

dkkJn(k) = n, n = 2, 4, 6, 8, 10 (B1)
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ε(θ, δ) ≡
√
cos2 θ + v2 sin2 θ

1 + π
2
α
v

√
cos2 θ + v2 sin2 θ

(B2)

v = v(δ) =
1− 2.23δ

1 + 0.37δ
(B3)

α = α(δ) =
2.2

κ(1 + 0.37δ)
(B4)

Q(δ) =
1

v2π

∫ 2π

0

dθ ε(θ, δ) (B5)

D(δ) =
1

v2π

∫ 2π

0

dθ cos(2θ) ε(θ, δ) (B6)

G(δ) =
−1

vπ

∫ 2π

0

dθ cos(4θ) ε(θ, δ) (B7)

I(δ) =
3

v2π

∫ 2π

0

dθ cos(6θ) ε(θ, δ) (B8)

J(δ) =
−2

vπ

∫ 2π

0

dθ cos(8θ) ε(θ, δ) (B9)

K(δ) =
5

v2π

∫ 2π

0

dθ cos(10θ) ε(θ, δ) (B10)

For a Coulomb impurity off the plane the following
functions appear:

fn(r/z) =

∫ ∞

0

ds s e−s/(r/z) Jn(s) (B11)

Appendix C: Short-Range Impurity

The following integrals and functions appear in the
main text of the Section discussing the case of short range
impurity.

∫ ∞

0

dk k2Jn(k) = n2 − 1 (C1)

𝑘!𝑥
𝑘!𝑦

𝑛 𝐫
(arb. units)

FIG. 13. Typical induced charge pattern (in arbitrary units)
showing Friedel oscillations for uniaxially strained graphene
(δ = 0.2), at finite chemical potential.

Qs(δ) =
1

2π

∫ 2π

0

dθ ε(θ, δ) (C2)

Ds(δ) =
6

2π

∫ 2π

0

dθ cos(2θ) ε(θ, δ) (C3)

Gs(δ) =
−30

2π

∫ 2π

0

dθ cos(4θ) ε(θ, δ) (C4)

Is(δ) =
70

2π

∫ 2π

0

dθ cos(6θ) ε(θ, δ) (C5)

Js(δ) =
−126

2π

∫ 2π

0

dθ cos(8θ) ε(θ, δ) (C6)

Ks(δ) =
198

2π

∫ 2π

0

dθ cos(10θ) ε(θ, δ) (C7)

Appendix D: Anisotropic Friedel Oscillations

Consider finite chemical potential µ. Then, the result
for the polarization is [4]

Π(q) = − 2|µ|
πvxvy

+
|ε(q)|
2πvxvy

G(2|µ|/|ε(q)|)Θ(|ε(q)| − 2|µ|),

(D1)
where

G(x) = x
√

1− x2 − arccos (x). (D2)

We have evaluated numerically the corresponding
charge density profile around a Coulomb impurity and
the results are presented in Figure 13, where we define
kF = |µ|/vx. This is the anisotropic generalization of the
usual Friedel oscillations present in isotropic graphene
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