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Atomically thin superfluid and solid phases for atoms on strained graphene
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Atoms deposited on atomically thin substrates are a playground for exotic quantum many-body physics due to
the highly tunable, atomic-scale nature of the interaction potentials. The ability to engineer strong interparticle
interactions can lead to the emergence of collective states of matter, not possible in the context of dilute atomic
gases confined in optical lattices. While it is known that the first layer of adsorbed helium on graphene is
permanently locked into a solid phase, we motivate, with a physically intuitive mean-field calculation, and
confirm, with quantum Monte Carlo simulations, that simple isotropic graphene lattice expansion unlocks a
large variety of two-dimensional ordered commensurate, incommensurate, cluster atomic solid, and superfluid
states for adsorbed atoms. It is especially significant that an atomically thin superfluid phase of matter emerges
under experimentally feasible strain values, with potentially supersolid phases in close proximity on the phase
diagram.
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I. INTRODUCTION

Seeking to understand the behavior of strongly interacting
electrons in quantum materials, where the Hamiltonian may
be known from first principles but it is not possible to fully
predict all emergent behaviors, has led to a fruitful program
of quantum simulation [1], where analogous systems are con-
structed from well-understood and controllable constituents.
Promising examples include the study of atoms confined in
optical lattice potentials [2–4], electrons in two-dimensional
(2D) materials [5,6], Rydberg arrays [7], and superconducting
circuits [8]. These approaches can realize lattice Hamiltonians
on mesoscopic scales, or at low densities; however, generating
strong interactions at the atomic scale remains a challenge. A
promising route is the construction of synthetic matter where
atoms are adsorbed onto a physical substrate with [9] or with-
out [10,11] chemical bonding.

Here we consider the latter case of bosonic 4He atoms
adsorbed on graphene, where both atom-atom and atom-
substrate interactions are driven by van der Waals (VDW)
dispersion forces. This is an ideal platform to study many-
body phenomena, and thick multilayer adsorbed 4He films
have been a subject of considerable interest for over half a
century. They have informed our understanding of criticality,
including the role of the healing length [12] and the universal
jump of the superfluid density at the Kosterlitz-Thouless (KT)
transition [13,14]. For a graphite substrate, the presence of
strong adsorption sites forming a triangular lattice (the dual
lattice of graphite hexagon centers) produces commensurate
and incommensurate solid phases in the first layer of adsorbed

4He, observable by anomalies in the heat capacity [15–18].
In the second and higher adsorbed layers, the 4He atoms
can form a superfluid phase at a temperature TKT below the
bulk Tλ, detectable via third sound or a frequency shift of
the adsorbed mass with a torsional oscillator [19–21]. Fur-
ther details on the coverage-temperature phase diagram have
been obtained by numerical simulations exploiting different
forms of the graphite-helium interaction [22–25]. While it
has ultimately been understood that bulk helium does not
exhibit a supersolid phase, one that simultaneously breaks
translational and gauge symmetries [26], the existence of su-
persolidity in models of hard-core bosons on the triangular
lattice [27] makes adsorbed helium on graphite a candidate
system for realizing exotic phases. Recent experimental re-
sults provide some support for this scenario, arguing that
while the first layer remains insulating, thick helium films may
exhibit intertwined superfluid and density wave order [28–30].

The propensity for insulating behavior in the first layer
can be understood as following from the magnitude of the
corrugation potential (∼30 K), that localizes atoms through
an exponential suppression of tunneling between triangular
lattice adsorption sites. It is thus natural to consider replac-
ing the graphite substrate with graphene, providing the same
triangular lattice, but with a 10% weaker potential. This has
motivated a flurry of quantum Monte Carlo simulations at
both zero and finite temperature predicting different (and
sometimes contradictory) phase diagrams for the second and
higher adsorbed layers of 4He [31–37]. However, there is con-
sensus that first adsorbed layer appears to remain stubbornly
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FIG. 1. Interactions between atoms adsorbed on graphene can
be manipulated via mechanical biaxial strain. The parameters of
a Bose-Hubbard Hamiltonian (hopping t , nearest-neighbor V , and
next-nearest-neighbor V ′ interactions) can be strong functions of the
strain δ; see Sec. III.

insulating, showing no evidence of quantum delocalization,
and providing little motivation for expanded experimental
searches.

In this paper, we show that an atomically thin superfluid
phase of 4He can be realized in this experimentally real-
izable system via a quantum phase transition tuned by the
application of moderate (5%–15%) biaxial (isotropic) strain
to the graphene membrane (see Fig. 1). This is possible due
to the fact that graphene can be mechanically stretched along
one [38,39], or multiple axes [40,41] to produce an increase
in the carbon-carbon bond length a0. Strain increases the
distance between adsorbed 4He atoms, and over this Å scale,
the interactions between them can change from strong (hard-
core) repulsion to weak VDW attraction [42]. Consequently,
graphene’s adsorption potential can be viewed as an “effective
2D lattice” for the 4He atoms with a period on the scale
of atomic interactions. This setup, with tunable interatomic
interactions, is conceptually very difficult to achieve for di-
lute gases in optical lattices [2] which may allow multiple
(soft-core) bosons per site, with a tunable kinetic energy via

the strength of the lattice potential. 4He on graphene can
realize an effective 2D hard-core Bose-Hubbard model with
strain-dependent nearest- (V ) and next-nearest- (V ′) neighbor
interactions [43]. In the remainder of this paper, we define the
details of both the microscopic and effective model describing
the adsorbed atoms in Sec. II and explore the effects of strain
on the latter by mean field calculations in Sec. III. We then
confirm the mean field picture with large-scale ab initio quan-
tum Monte Carlo simulations of 4He on strained graphene
at low temperature in Sec. IV. We conclude in Sec. V that
this system is a highly tunable (via mechanical strain and
pressure and chemical potential) platform for the experimental
exploration and discovery of strictly two-dimensional strongly
interacting quantum phases of matter.

II. MODEL: HELIUM NEAR STRAINED GRAPHENE

4He atoms of mass m4 interacting with a strained
suspended graphene membrane can be described by the mi-
croscopic many-body Hamiltonian

H = − h̄2

2m4

N∑
i=1

∇2
i +

N∑
i=1

Vs(ri; δ) +
∑
i< j

V (ri − r j ). (1)

Here, Vs is the adsorption potential experienced by an atom
at spatial position ri = (xi, yi, zi ) with strain captured by δ ≡
a/a0 − 1, quantifying the increase of the carbon-carbon dis-
tance a with respect to a0 � 1.42 Å; see next paragraph for
more details. The interaction between 4He atoms V is known
to high precision [42,44]. In what follows we set the Boltz-
mann constant kB = 1 and measure all energies in units of K.

We consider a strained graphene membrane that is frozen
in place at z = 0 with lattice (a) and basis (b) vectors:

a1(δ) = a0(1 + δ)

2
(
√

3, 3), b1(δ) = a0(1 + δ)

2
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√

3, 1),
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2
(−

√
3, 3), b2(δ) = a0(1 + δ)(0, 1).

(2)

The resulting empirical interaction potential Vs between 4He
and the strained graphene is computed by assuming a super-
position of isotropic 6–12 Lennard-Jones potentials between
carbon and helium [45]:

Vs(ri ) = 8πε(δ)σ 2(δ)
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]⎫⎬
⎭, (3)

where σ (δ) and ε(δ) are strain-dependent Lennard-Jones pa-
rameters that have been computed via the method described in
Ref. [46] with values and tabulated potentials (up to δ = 0.3)
available online [47]. In Eq. (3), ri = (xi, yi ) are the coordi-
nates of a 4He atom in the xy plane, and g(δ) = n1G1(δ) +
n2G2(δ) are the reciprocal lattice vectors with magnitude

g(δ) ≡ |g(δ)|, where n1, n2 ∈ Z,

G1(δ) = 2π

3a0(1 + δ)
(
√

3, 1),

G2(δ) = 2π

3a0(1 + δ)
(−

√
3, 1) (4)
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FIG. 2. The density of 4He as a function of the distance above the
graphene membrane at δ = 0.15 for μ = −93K at T = 0.6K. These
parameters are shown, in Sec. IV, to correspond to the superfluid
state of the adsorbed layer. The full width at half-maximum of 0.71 Å
of the layer supports the effective 2D treatment within the Hartree-
Fock and Bose-Hubbard pictures.

and Kn are modified Bessel functions which decay as
exp(−gzi ) at large argument.

Numerical simulations of Eq. (1) with δ = 0, for both
graphite and graphene [22,23,31,34,35,43], are consistent
with the respective experimentally observed phase diagrams
for graphite [20,21]. As the pressure is increased from vac-
uum, there is a first-order transition where a single layer
is adsorbed, forming a commensurate incompressible solid
phase dubbed C1/3, where 4He atoms are localized around
every third of the strong binding sites. The C1/3 phase is
stable over a range of chemical potentials [35,43,48] due to
the strong repulsive interactions V (

√
3a0) ≈ 50 K per atom

when nearest-neighbor sites are occupied (see Fig. 1). As the
pressure of the proximate helium gas is further increased,
eventually other commensurate and incommensurate phases
can be realized due to energetic compensation by the chemical
potential, including those with proliferated domain walls [35].

In the unstrained graphene (δ = 0), it is energetically favor-
able to form a second layer (and beyond) once the triangular
lattice filling fraction reaches the value n � 0.6. However, at
all lower fillings for δ = 0, the transverse width of the wave
function of the adsorbed 4He atoms remains on the atomic
scale, and the problem can be viewed as quasi-2D [43]. For
strained graphene (δ > 0), quantum Monte Carlo simulations,
reported in Sec. IV, show that for sufficiently large δ, this
quasi-2D character of the first absorbed layer can persist for
filling fractions up to n = 1. Figure 2 illustrates the 2D char-
acter by showing a typical example of the z cross section of
the absorbed 4He many-body wave function.

III. MOTIVATION: STRAIN TUNING
AT THE MEAN-FIELD LEVEL

In this preliminary section we present mean-field ar-
guments to motivate the physical picture of strain-tuned
interaction that we later explore with quantum Monte Carlo
simulations.

The strongly 2D character exhibited discussed in the pre-
vious section was recently exploited in Refs. [11,43] to
demonstrate that the first adsorbed layer of 4He on unstrained
graphene (δ = 0) is well characterized by an effective ex-
tended hard-core (infinite onsite repulsion) 2D Bose-Hubbard
(BH) model on the triangular lattice. This represents the low-
energy sector of the full microscopic Hamiltonian in Eq. (1)
with effective parameters corresponding to hopping t and both
nearest- (V ) and next-nearest-neighbor (V ′) density-density
interactions:

HBH = −t
∑
〈i, j〉

(
b†

i b j + b†
jbi

) + V
∑
〈i, j〉

nin j

+ V ′ ∑
〈〈i, j〉〉

nin j − μ
∑

i

ni. (5)

Here b†
i (bi ) creates (annihilates) a hard-core 4He atom on

site i of the triangular lattice (center of a graphene hexagon)
and ni = b†

i bi measures the number of atoms per site, with
[bi , b†

j] = δi j . Subscripts 〈i, j〉 and 〈〈i, j〉〉 indicate near-
est and next-nearest neighbors, respectively. The chemical
potential μ can be tuned to change the average filling fraction
n = 〈ni〉.

For 4He on unstrained graphene, it is known from many-
body as well as first-principle ab initio methods [43] that V
is strongly repulsive, originating from the overlap of adsorbed
localized particle wave functions on the scale of the lattice
spacing, while V ′ is much weaker and attractive, due to the
VDW tail, with the ratio V/|V ′| � 30. The phase diagram of
Eq. (5) can be computed at the mean-field level [49] (see
Appendix A for more details), and it exhibits well-known in-
sulating phases at commensurate filling fractions n = 1

3 , 2
3 , 1,

as well as a superfluid and supersolid phase, as a function of
the chemical potential μ and hopping t as shown in Fig. 3(a).
For the purposes of understanding the phase diagram, it is use-
ful to plot things in terms of related dimensionless quantities.
The ground state of 4He on unstrained graphene at fixed μ

above the first-order transition from vacuum is indicated by a
cross (×), explaining the stability of the aforementioned C1/3
phase at n = 1

3 .
A key observation from Fig. 3, which motivates this study,

is as follows. While the microscopic interaction V in Eq. (1)
is fixed, the effective ones in Eq. (5) experienced by adsorbed
atoms are not, and instead are determined by wave-function
overlap (see Ref. [43] and Appendix B) and can thus be
modified through strain. As the carbon atoms are moved fur-
ther apart, V and V ′ will be modified, leading to qualitative
changes in the mean-field phase diagram as the ratio V/|V ′|
is altered. Namely, as will be justified below, we expect this
ratio to decrease and eventually change sign. Therefore, in
Figs. 3(b) and 3(c) we show modified mean-field phase dia-
grams computed for V/|V ′| = 1 and −1, respectively. In the
former case, the location of × indicates that the 4He mono-
layer is now in the superfluid phase, whereas in the latter
case, one finds the monolayer in a strongly correlated n = 1
insulating phase. This latter phase is due to the adsorbed atoms
becoming far enough apart that their dominant effective inter-
action (V ) is due to the attractive VDW tail of the microscopic
interaction V .
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FIG. 3. (a) Mean-field phase diagram as a function of dimen-
sionless chemical potential μ and hopping t for hard-core bosons
on the 2D triangular lattice with the ratio of nearest- to next-nearest-
neighbor interactions V/|V ′| � 30 (the physically realized value for
δ = 0). The ground state of the 4He adsorbed layer (with physical
parameters identified in Ref. [43]), is indicated by a × symbol at
fixed μ. Lobes with crystalline phases appear at filling fractions
n = 1

3 , 2
3 , and 1 as μ is increased for small t , and a superfluid phase

(SF) is stable for larger t . (b), (c) show modified mean-field phase
diagrams for V/|V ′| � 1 and V/|V ′| � −1, respectively, where the ×
symbol indicates the proposed phase for 4He on strained graphene.

To confirm the above expectations about the ratio V/|V ′|
as the lattice is isotropically expanded, we analyze the strain
dependence of the microscopic adsorption potential Vs and
resulting effective parameters of the 2D Bose-Hubbard model
in Fig. 4. Figure 4(a) shows that for a single 4He atom at
height z above the center of a graphene hexagon, as strain
is increased, the adsorption potential becomes less attractive,
with a minimum that softens by 30% from −188 K for δ = 0
to −134 K for δ = 0.3. The location of the adsorbed 2D layer,
expected to occur near this minimum zmin, moves further from
the sheet by 7% (2.5 Å → 2.7 Å). Thus, the increase of zmin

is correlated with a decrease of the barrier height between
lattice sites experienced by adsorbed atoms due to Vs, and
may cause a propensity for enhanced delocalization for δ > 0.
These changes in the microscopic adsorption potential are
reflected in the effective parameters of the BH model shown
in Figs. 4(b)–4(d). Parameters t , V , and V ′ are computed via
Hartree-Fock theory from the average interaction energy at
the nearest- and next-nearest-neighbor level determined from
the self-consistent adsorbed wave functions; see Appendix B.
They are compared with semiclassical (SC) predictions VSC ≡
V[

√
3(1 + δ)a0] and V ′

SC ≡ V[3(1 + δ)a0] computed directly
from the 4He - 4He interaction potential. As can be seen in
Fig. 4(c), V experiences a drastic reduction as δ is increased,
with strong wave-function renormalization effects, ultimately
vanishing near 19% strain, and becoming attractive for δ >

0.2. As V ′ is controlled by the VDW tail of V , which already
includes quantum effects at this scale, there is nearly perfect
agreement between the semiclassical and the Hartree-Fock
calculation. While the hopping t decreases by 50% due to
the lattice expansion, this effect is dwarfed by the decrease

FIG. 4. (a) The helium-graphene adsorption potential Vs in
Eq. (1) as a function of the height z of an atom above a graphene
adsorption site for different values of strain δ. The inset quanti-
fies how strain reduces the binding energy per atom (left axis)
and shifts the location of the minimum, zmin, (right axis) further
from the membrane. (b)–(d) demonstrate the effects of strain on
the effective 2D Bose-Hubbard model parameters t , V , and V ′ as
computed via Hartree-Fock (HF); see Appendix B. Dashed lines in
(c) and (d) correspond to the semiclassical (SC) predictions for the
interaction parameters computed from V as VSC ≡ V[

√
3(1 + δ)a0]

and V ′
SC ≡ V[3(1 + δ)a0]; this approximation ignores the extended

character of 4He atoms’ wave functions.

of the normalization factor (|V | + |V ′|), which controls the
mean-field phase diagram presented in Fig. 3 and ultimately
pushes the adsorbed 4He atoms into an energetic regime which
can support superfluidity.

IV. RESULTS: COMPETING QUANTUM PHASES
AND SUPERFLUID PHASE DIAGRAM VIA QUANTUM

MONTE CARLO

To validate these predictions, and generate an experimen-
tally relevant phase diagram, we have performed stochasti-
cally exact ab initio quantum Monte Carlo simulations of
the full microscopic Hamiltonian in Eq. (1) for temperatures
below Tλ � 2.17 K. The details of our simulations, based
on the Feynman path-integral formalism [50], are included
in Appendix C, along with a description of how finite-size
graphene simulations for cells with dimension Lx × Ly were
extrapolated to the thermodynamic limit. The Monte Carlo
code [51], unprocessed simulation data [52], and processed
data and scripts [53] are readily available and can be utilized
to reproduce all the figures presented in this paper.

For each value of strain between 0 � δ � 0.30 and for tem-
peratures down to T = 0.5 K we perform a grand canonical
Monte Carlo simulation as a function of chemical potential
μ for system sizes corresponding to Ns = 16, 36, 64, 90, 144
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FIG. 5. Adsorption isotherms for 4He on strained graphene.
Points are quantum Monte Carlo results for the filling fraction n =
〈N〉/Ns as a function of chemical potential μ for three values of
strain at T = 1.0 K and Ns = 90. The filled region in the background
corresponds to the normalized compressibility κ ∝ 〈(N − 〈N〉)2〉.
Plateaus in the adsorption curves indicate incompressible solid
phases, which may exist at commensurate filling fractions (indi-
cated by horizontal lines at n = 1

3 and 7
16 ). A state with unit filling

(n = 1) is only possible at high strains (e.g., δ = 0.3 shown here)
where the distance between triangular lattice adsorption sites has
been stretched to a regime where the interactions between helium
atoms become attractive. For δ = 0.15, the qualitatively different
onset behavior (characterized by the continuous increase in density
and high compressibility) corresponds to the superfluid region of
the phase diagram described in Fig. 6. Error bars represent standard
statistical uncertainties from quantum Monte Carlo sampling.

strong adsorption sites. For each system size, temperature,
and strain, we measure an adsorption isotherm n(δ) vs μ

such as the ones for δ = 0.0, 0.15, 0.30 shown in Fig. 5 at
T = 1 K. For δ = 0, as μ is increased, we find commen-
surate solid phases with filling fractions n = 1

3 and 7
16 , that

have been observed in previous simulations of unstrained
graphene [35] and experiments with graphite substrates [18].
The n = 7

16 solid is not realized in the BH lattice model, and
is only energetically favorable in the presence of a smooth
corrugation potential Vs as exists in the microscopic Hamil-
tonian in Eq. (1). The shaded background region shows the
associated compressibility κ ∝ 〈N2〉 − 〈N〉2 in arbitrary units,
where large values correspond to the first-order transition out
of the vacuum, or to the transition between different com-
mensurate (or incommensurate) solid phases. As the strain is
increased, the initial adsorption transition out of the vacuum
is pushed to larger (less negative) values of μ, consistent with
the softening of the adsorption potential shown in Fig. 4.
For δ = 0.15, we observe a strong qualitative difference with
the δ = 0 case, as the onset of the first layer occurs over a
wide range of chemical potentials indicated by a large band of
finite compressibility. This behavior persists for the extreme
value of δ = 0.3, where we also observe new commensurate
phases with large n appearing for μ � −60 K.

Putting all of these quantum Monte Carlo isotherms to-
gether, we can construct the low-temperature μ-δ phase
diagram, shown in Fig. 6, that captures the strain dependence
of the phases and phase transitions of the adsorbed helium

monolayer. This phase diagram represents the main result of
this work.

For low values of strain (<5%), we observe analogous be-
havior to the strain-free case already seen in Fig. 5 above with
a first-order adsorption transition out of the vacuum leading to
a well-defined incompressible monolayer with commensurate
n = 1

3 filling, followed by n = 7
16 and other incommensurate

phases upon increasing μ.
At strain increases, the strong nearest-neighbor repulsion

between adsorbed 4He atoms is reduced as the C-C distance
increases. Above 5% strain, we observe a transition from
either a low-density compressible liquid or vacuum to a su-
perfluid. For 0.05 � δ � 0.12, this transition occurs around
μ � −101 K, indicated as a horizontal line in Fig. 6 [for
more detailed information along this cut see Fig. 7(a)]. Here,
superfluidity is quantified within the two-fluid picture where
the total adsorbed density of atoms is broken into normal
and superfluid parts with ρ = ρn + ρs, where ρ = 〈N〉/(LxLy)
with 〈N〉 being the average number of adsorbed 4He atoms,
Lx, Ly being the dimensions of the simulation box, and ρs

the superfluid density computed via the winding of parti-
cle world lines [54]; see Appendix C for calculation details.
While the superfluid region for 0.05 � δ � 0.12 persists in the
thermodynamic limit, ρs develops an aspect ratio dependence,
suggesting this region could be nonuniversal. For larger values
of strain δ � 0.12, the extended superfluid region is more
robust, extending up to ∼25% strain and over a range of μ.

The inset to the main panel of Fig. 6 shows the den-
sity ρ(x, y) of adsorbed atoms in the superfluid phase and
illustrates the qualitatively different nature of this state, as
compared to the solids shown in the six halos surrounding
the main panel. In the superfluid, the density is nonvanishing
across all adsorption sites, i.e., there is complete delocaliza-
tion of 4He atoms. In contrast, for a similar filling fraction n ∼
0.4 in halo No. 2, corresponding to a solid n = 7

16 phase, 4He
atoms are localized around some 40% of the sites, with par-
ticle smears corresponding to the tunneling between different
equivalent ground states appearing in our ergodic simulations.
Also, within the superfluid phase, there is some evidence of
coexisting solid order, but further work remains to be done
to confirm the existence of a supersolid phase induced by the
strained graphene lattice potential.

At the highest values of strain δ � 0.24, superfluidity no
longer appears for any value of μ, and instead we observe
the direct transition out of the vacuum to high filling frac-
tion phases. Due to lattice expansion, interactions between
adsorbed 4He atoms on strong binding sites have become
attractive (see Fig. 4), which for large μ culminates in the
n = 1 state (see halo No. 6) predicted in our mean-field anal-
ysis. More details on the superfluid phase can be obtained
by taking horizontal and vertical cuts through Fig. 6 with the
results shown in Fig. 7. For fixed μ/kB = −101 K, the finite-
temperature strain phase diagram [Fig. 7(a)] shows the onset
of a finite superfluid fraction near δ = 0.03 and the transition
to vacuum for δ > 0.13. The critical temperature for the onset
of superfluidity remains relatively constant near T ≈ 1 K over
the entire phase. Fixing strain at δ = 0.12, Fig. 7(b) presents
both the total filling fraction n and the superfluid fraction
ρs/ρ as a function of chemical potential, with the maximal
superfluid signal occurring for n � 0.4 and μ � −97 K.
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FIG. 6. Quantum Monte Carlo phase diagram (central panel) and adsorbed particle configurations (halos Nos. 1–6) as a function of
chemical potential μ and isotropic strain δ = a/a0 − 1. The colored background of the main panel shows the compressibility of the adsorbed
layer, with darker colors being more compressible. At small values of strain, large bounded regions indicate commensurate solid phases with
n = 1

3 and 7
16 of adsorption sites filled. As strain is increased, a superfluid phase (SF, orange) emerges with a critical temperature above

T = 0.5 K in the thermodynamic limit, with a boundary indicated by × symbols. The behavior of the superfluid and particle density along the
indicated horizontal and vertical cuts is shown in Fig. 7. Subpanels (halos Nos. 1–6) show the average density ρ(x, y) of adsorbed helium at
different regions of the phase diagram (indicated by �), detailing the particle configurations in both commensurate and incommensurate phases
for Ns = 48 adsorption sites at T = 1.0 K. The filling fraction is indicated in each halo along with a scale bar highlighting the increase in the
C-C separation. Small white dots indicate locations of carbon atoms. All are plotted on the same relative color scale [〈N〉 = ∫

dx dy ρ(x, y)]
with dark blue indicating zero density and light greenish, the highest. At large strain, the unit filling phase predicted by the mean-field theory
[see Fig. 3(c)] is observed in halo No. 6. It is important to note that the adsorbed density in the superfluid phase (bottom right inset of central
panel) is qualitatively different from the density in the halos, exhibiting the delocalization of atoms between all adsorption sites, as discussed
in the main text.

We close this section by noting that our fully microscopic
and interacting phase diagram has a qualitative resemblance
to the motivating mean-field predictions in Sec. III. This can
be seen more clearly when recasting the axes in dimensionful
units as shown in Fig. 8 in Appendix A.

V. DISCUSSION: PROSPECTS FOR MEASUREMENT

We have demonstrated through mean-field predictions for
a low-energy effective lattice Bose-Hubbard model and con-
firmed by ab initio quantum simulations of a microscopic
Hamiltonian, that isotropic biaxial strain applied to a graphene
substrate can modify interactions between 4He adatoms and
lead to new atomically thin two-dimensional quantum phases
and quantum transitions between them. It is thus natural to
ask if this new superfluid phase could be realized in a real ex-
periment. Graphene can withstand uniaxial mechanical strain
of around 20% or more [39,55], and several-percent strain
is now routinely realized [38,56,57]. Isotropic biaxial strain,
as considered here, has been analyzed theoretically and also
realized experimentally [39–41,58,59]. On a fundamental
level, strain leads to substantial qualitative changes in elec-
tronic properties of the substrate, which can be calculated

with great theoretical precision, and consequently generate
predictions for measurable physical characteristics [39,60].

By combining well-known techniques to realize suspended
graphene [61,62] (or other classes of two-dimensional mate-
rials, e.g., the dichalcogenide family MoSe2, MoS2, WSe2,
WS2 [39,59,60]) with protocols that can simultaneously mea-
sure positional and superfluid responses of atoms adsorbed on
flat [30,63,64] or curved [65] surfaces, the phase diagram in
Fig. 6 could be experimentally explored.

In this regard, we stress that our quantum Monte Carlo
phase diagram predicts the possibility of a monlayer super-
fluid phase of 4He for values of isotropic strain as low as 4%,
whereas recent experiments have achieved values of 2% for
biaxial [41,58], and 4%–6% for uniaxial [56,59], strain. Thus,
strain values required for observation of exotic phases of
helium over 2D materials are on the cusp of experimental real-
ization. Of course, such experiments are not performed under
the “ideal” theoretical conditions assumed in our numeri-
cal modeling and could involve bending, proximity effects,
strain asymmetry, etc, as well as not yet being performed at
cryogenic temperatures. However, due to the rapid pace of
technological developments in the field of two-dimensional
materials, it is reasonable that such experiments are feasible
in the near future. Such studies could be further motivated
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FIG. 7. (a) A horizontal cut at fixed chemical potential μ/kB =
−101 K, indicated by the horizontal dashed line in Fig. 6, shows
the finite-temperature onset of the superfluid phase as a function of
strain. A nonvanishing superfluid fraction is measured up to the tran-
sition to the vacuum beyond δ = 0.13. (b) The total particle filling
fraction n and superfluid fraction ρs/ρ of the adsorbed atoms as a
function of chemical potential μ at a fixed value of strain (δ = 0.12)
and temperature T = 0.6 K (the vertical dotted-dashed line in Fig. 6).
In both panels, the error bars are computed as a combination of
stochastic uncertainties from the Monte Carlo simulations and errors
obtained from extrapolating to the thermodynamic limit. The smooth
lines represent a guide to the eye.

FIG. 8. Mean-field phase diagram of the extended 2D Bose-
Hubbard model on the triangular lattice, presented in physical units
of μ and δ. The diagram is based on the equations in Appendix A,
with the strain dependence being introduced via that dependence of
t (δ), V (δ), and V ′(δ) from Fig. 4.

by Sec. IV, of the competition between superfluid and corre-
lated solid orders throughout the phase diagram, which opens
up the possibility of realizing an adsorbed supersolid phase
induced by the graphene adsorption potential with broken
gauge and lattice symmetries (as predicted by the mean-field
theory in Figs. 3 and 8 and possibly already present in our
quantum Monte Carlo results; see Fig. 6). Thus, the combina-
tion of strain-engineered substrates with a proximate quantum
gas provides a new venue for the quantum simulation of
tunable strongly interacting Hamiltonians via band structure
modification.
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APPENDIX A: MEAN-FIELD THEORY

Starting from the effective low-energy Bose-Hubbard
Hamiltonian (5), the interaction terms can be decoupled for
each lattice site i within the standard mean-field approach [49]
leading to

HMF,i = − 6t[ψ (bi + b†
i ) − ψ2]

+ 6(V + V ′)
(

ρni − ρ2

2

)
− μni, (A1)

where we have introduced the condensate density
〈bi 〉 = 〈b†

i 〉 = ψ and the localized density 〈ni〉 = ρ. For
an insulating state, ψ = 0. Diagonalizing in the basis of
occupations numbers 0 and 1 of the triangular lattice gives
the ground-state energy (per lattice site)

E = 6tψ2 + 3(V + V ′)ρ(1 − ρ) − μ

2

−
√(

μ − 6(V + V ′)ρ
2

)2

+ (6tψ )2.

The self-consistent eigenstates can be found by solving
∂ρE = ∂ψE = 0, yielding the particle and condensate densi-
ties as

ρ = 6t + μ

12t + 6(V + V ′)
, (A2)

ψ =
√

(6t + μ)[6t + 6(V + V ′) − μ]

12t + 6(V + V ′)
. (A3)

Energies of the solid phases are obtained as expectation val-
ues of the full Bose-Hubbard Hamiltonian (5) in states with
corresponding fillings ( 1

3 , 2
3 , 1) on the triangular unit cell.

Normalizing energies and chemical potential by the scale
|V | + |V ′|, we may write the dimensionless per-site energies
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of the solid and superfluid (SF) phases as

Ẽ j/3 = j

[−μ̃

3
+ sgn(V ) ( j − 1)/2 − 1

α + 1

]
, j = 1, 2, 3

ẼSF = − (6t̃ + μ̃)2(α + 1)

24t̃ (α + 1) + 12 [sgn(V )α − 1]
,

where we have introduced the notation c̃ ≡ c/(|V | + |V ′|),
and defined α ≡ |V/V ′|, with sgn(. . . ) being the signum
function.

To capture a possible supersolid phase (defined as one
having simultaneously broken translational and gauge sym-
metries), we allow for more degrees of freedom in the
mean-field decomposition. Considering the triangular unit cell
with sites A, B, C, we assume

ψA �= ψB = ψC and ρA �= ρB = ρC .

Decoupling the mean-field Hamiltonian in Eq. (A1) for each
unit cell yields

HMF,� = Ht + HV + HV ′ + Hμ,

where

Ht = − 3t
[
2ψB(bA + b†

A)

+ (ψA + ψB)(bB + b†
B + bC + b†

C ) − 4ψAψB − 2ψ2
B

]
,

HV = 3V
[
2ρBnA + (ρA + ρB)(nB + nC ) − 2ρAρB − ρ2

B

]
,

HV ′ = 3V ′[2ρAnA + 2ρB(nB + nC ) − ρ2
A − 2ρ2

B

]
,

Hμ = − μ(nA + nB + nC ).

The energy ESS of the resulting state can be found by numeri-
cal solution of

∂ψA E = ∂ψB E = ∂ρA E = ∂ρB E = 0

at each point in μ̃ − t̃ phase space.
The values of V and V ′ to be used can be determined by

Hartree-Fock calculations (see Appendix B) as a function of
strain δ. Three distinct physical regimes arise in terms of their
relative magnitudes, as discussed in Sec. III:

|V | � |V ′|, V > 0 unstrained
|V | � |V ′|, V > 0 moderate strain
|V | � |V ′|, V < 0 large strain.

Thus, by changing the ratio |V/V ′|, different mean-field phase
diagrams can be generated, as shown in Fig. 3. To obtain a
realistic phase diagram for the 4He-on-graphene system over
a range of physical parameters, one uses the Hartree-Fock
results for t (δ), V (δ), and V ′(δ) (see Fig. 4), which leads to
the phase diagram in Fig. 8. The qualitative features of this
mean-field phase diagram, including the existence of a super-
fluid strip and a n = 1 commensurate solid, are in qualitative
agreement with Fig. 6 in the main text.

APPENDIX B: HARTREE-FOCK METHOD

Since many-body quantum Monte Carlo simulations are
time consuming, we employed a computationally cheaper
method, based on the Hartree-Fock (HF) approximation, to
compute V and V ′ in Eq. (5) to be used in the strain-tuned

mean-field phase diagram. The HF ansatz for the wave func-
tion 
 for N bosons is


(r1, r2, . . . , rN ) =
∑
j(q)

N∏
q=1

φ j(q)(rq), (B1)

where rq are the three-dimensional (3D) coordinates of par-
ticle q, j(q) is a label of the triangular site where particle
q is found, and the one-particle quasi-wave functions (in
what follows we will drop “quasi”) satisfy the orthonormality
conditions

〈φi|φ j〉 ≡
∫

d2r φ
†
i (r)φ j (r) = δi, j, (B2)

with the † standing for Hermitian conjugation. Employing an
approximation φi(r) ≈ χ (z)ψi(r), where r is the 2D coordi-
nate in the plane parallel to the graphene sheet and z is the
perpendicular coordinate, the 2D-reduced wave function can
be shown to satisfy HF equations

− h̄2

2m
∇2

r ψi(r) + Vs(r)ψi(r)

+
∑
i �= j

∫
dr′ ψ∗

j (r′)V (r − r′)[ψ j (r′)ψi(r) + ψi(r′)ψ j (r)]

=
∑

j

Ei jψ j (r), (B3)

where the Lagrange multipliers Ei j are determined by the 2D
form of the orthonormality conditions (B2). The 2D nature
of the wave function is supported by quantum Monte Carlo
calculations of the density profile in the z direction, as shown
in Fig. 2. Additional details of the above approximations, as
well as of the solution method of Eq. (B3), were outlined
in [43]. In Eq. (B3), Vs(r) is computed as

Vs(r) ≡
〈∫

dz Vs(r, z)ρ(r, z)∫
dz ρ(r, z)

〉
, (B4)

where ρ(r, z) is the probability density obtained with one-
particle (and hence relatively fast) quantum Monte Carlo
simulations, and the angle brackets stand for the ensemble
average. Furthermore, V (r) is the 2D reduction (as explained
in Ref. [43]) of the interaction potential V (r, z) between two
helium atoms. In a slight deviation from [43], here for the
computation of the reduced 2D potential, we used the one-
dimensional probability density ρ(z) ≡ ∫

dr ρ(r, z), with the
ρ(r, z) as defined above. Then, parameter V in Eq. (5) is
computed as

V =
∫∫

dr dr′ |ψi(r)|2V (r − r′)|ψ j (r′)|2, (B5)

where i and j are the indices of the two nearest-neighbor
graphene cells. Parameter V ′ is defined similarly, but for the
next-nearest neighbors. Finally, parameter t is computed as
described in [43], using one-particle Wannier functions for a
single helium atom over the graphene sheet.

APPENDIX C: QUANTUM MONTE CARLO

The strained graphene plus 4He system described by the
Hamiltonian in Eq. (1) was simulated using a stochastically
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FIG. 9. Finite-size simulation cell. Three characteristic system
sizes used for finite-size scaling, where periodic boundary conditions
restrict the box dimensions to be a multiple of lattice vectors in the x
and y directions. The resulting box size is a function of strain δ, and
Ns refers to the number of triangular lattice adsorption sites in the
simulation cell.

exact quantum Monte Carlo (QMC) algorithm exploiting path
integrals [43,50,66]. Finite-temperature expectation values of
observables O in the grand canonical ensemble were sampled
via

〈O〉 = 1

Z Tr[O e−β(H−μN )], (C1)

where β = 1/T is the inverse temperature (kB = 1), and the
grand partition function Z = Tre−β(H−μN ) can be written as
a sum of discrete imaginary-time paths (world lines) over
the set of all permutations P of the first-quantized labels of
the N indistinguishable 4He atoms. Algorithmic details have
been reported elsewhere (e.g., Refs. [43,67,68]) and our QMC
software is available online [51].

1. Simulation cell

The simulation cell is defined by a rectangular prism of
dimensions Lx × Ly × Lz where Lx and Ly are chosen such
that the strained graphene sheet is compatible with periodic
boundary conditions in the x and y directions. A membrane
with Ns = 2NxNy triangular lattice adsorption sites requires
that Lx = a0(1 + δ)

√
3Nx for the zigzag direction and Ly =

3a0(1 + δ)Ny for the armchair direction. Three of the box
sizes corresponding to different numbers of adsorption sites
used for finite-size scaling our QMC results to the thermody-
namic limit are shown in Fig. 9.

2. Observables

To map out the phase diagram reported in Fig. 4 in the main
text, we have computed a number of observables obtained via
quantum Monte Carlo estimators. The total number of 4He
atoms in the simulation cell can fluctuate in the grand canoni-

cal ensemble at fixed temperature T and chemical potential μ

leading to an average value 〈N〉 and filling fraction

n ≡ 〈N〉
Ns

, (C2)

where Ns is set by the geometry of the simulation cell, and
utilizing the fact that all atoms are adsorbed. The density of
4He is given by

ρ(r) =
〈

1

N

N∑
i=1

δ(r − ri )

〉
, (C3)

where δ(. . . ) is the Dirac delta function. The planar density of
4He adsorbed to the graphene can be computed by integrating
over z: ρ(x, y) = ∫

dz ρ(r) and its resulting compressibility is
given by the usual fluctuation measure

κ = 〈N2〉 − 〈N〉2

kBT LxLy
. (C4)

Finally, the superfluid density ρs is related to the response of
the free energy to a boundary phase twist [69] which can be
captured in QMC via the topological winding number W of
particle world lines around the simulation cell [54,70,71]:

ρs = m2
4

2h̄2βLxLy

(
L2

x

〈
W 2

x

〉 + L2
y 〈Wy〉2

)
, (C5)

where

Wx = 1

Lx

N∑
i=1

∫ h̄β

0
dτ

[
dxi(τ )

dτ

]
. (C6)

with m4 the mass of a 4He atom and xi(τ ) the x coordinate of
the imaginary-time world line corresponding to atom i.

3. Simulation details and finite-size scaling

Quantum Monte Carlo calculations were performed for
T = 0.5–2.0 K and chemical potentials μ from −129–−41 K
at system sizes corresponding to Ns = 16, 36, 64, 90, 144
triangular lattice adsorption sites to obtain particle config-
urations at values of the isotropic strain δ = 0 (unstrained)
to δ = 0.3 (strongly strained). The imaginary-time step was
fixed at τ = 0.00313 K−1 such that any systematic effects due
to Trotterization are smaller than statistical sampling errors.
While quantum Monte Carlo simulations are performed at
fixed system size (in the grand canonical ensemble), mea-
surements of superfluid and particle densities were obtained
via a finite-size scaling procedure at each temperature to ex-
trapolate to the thermodynamic limit. Details are shown in
Fig. 10, where we have assumed the finite-size scaling forms
n(N ) = n|∞ + O(1/N ) and ρs(N ) = ρs|∞ + O(1/

√
N ). The

superfluid phase boundary in Fig. 6 was determined by per-
forming this finite-size scaling procedure at 65 (δ, μ) points
and identifying as superfluid any point where ρs persists in the
thermodynamic limit for temperatures greater than T = 0.5 K
(the base T in our quantum Monte Carlo study). Error bars
on composite estimators (such as the compressibility) were
estimated via jackknife sampling [72].
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FIG. 10. Finite-size scaling of the particle and superfluid density. For each (δ, μ) data point, the existence of a superfluid phase in the
thermodynamic limit is investigated by finite-size scaling of quantum Monte Carlo (QMC) data points. Columns show this procedure at two
different values of μ for δ = 0.12. For μ = −94.0 K, superfluidity persists below T = 0.7 K, while no region of superfluidity is found for
μ = −88 K in the thermodynamic limit. The form of the linear scaling functions (lines) for the filling fraction (top row) and superfluid fraction
ρs/ρ (rows 2–6) is described in Appendix C 3. Error bars represent standard statistical uncertainties in quantum Monte Carlo.
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