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ABSTRACT: Local stress fields are routinely computed from
molecular dynamics trajectories to understand the structure and
mechanical properties of lipid bilayers. These calculations can be
systematically understood with the Irving−Kirkwood−Noll
theory. In identifying the stress tensor, a crucial step is the
decomposition of the forces on the particles into pairwise
contributions. However, such a decomposition is not unique in
general, leading to an ambiguity in the definition of the stress
tensor, particularly for multibody potentials. Furthermore, a
theoretical treatment of constraints in local stress calculations has
been lacking. Here, we present a new implementation of local
stress calculations that systematically treats constraints and
considers a privileged decomposition, the central force decomposition, that leads to a symmetric stress tensor by construction.
We focus on biomembranes, although the methodology presented here is widely applicable. Our results show that some
unphysical behavior obtained with previous implementations (e.g. nonconstant normal stress profiles along an isotropic bilayer in
equilibrium) is a consequence of an improper treatment of constraints. Furthermore, other valid force decompositions produce
significantly different stress profiles, particularly in the presence of dihedral potentials. Our methodology reveals the striking
effect of unsaturations on the bilayer mechanics, missed by previous stress calculation implementations.

■ INTRODUCTION
Lipid membranes compartmentalize and spatially segregate the
numerous processes that take place within the cell. These
membranes are composed of a variety of lipid species such as
phospholipids and sterols, and they also host a large number of
associated and integral membrane proteins. Many of the lipids
in the membrane are involved in the regulation of biological
functions through specific biochemical interactions,1−3 yet the
structure (e.g., bilayer thickness) and mechanics (e.g., bending
modulus) of the membrane also play an important, and in
many cases critical, role in the function of bilayers and
associated proteins involved in processes such as mechano-
transduction, signaling, and transport.4−8 While some bulk
mechanical properties of the membrane can readily be obtained
experimentally or computationally, such as the area compres-
sibility or the bending elastic moduli, other important
mechanical features, such as the stress state within the bilayer
or in the vicinity of an inclusion, are not easily accessible.
Furthermore, it is not clear how to relate mesoscopic properties
with atomic and molecular interactions.
Statistical mechanics bridges these different scales and

provides a local definition of the stress tensor, σ(x), from the
interaction forces and velocities of individual atoms. This idea
was first introduced by Irving and Kirkwood in a landmark
paper,9 and later developed by Noll10 and others.11−15 For fluid
isotropic membranes, σ reduces to two components conven-
tionally defined as PL = −(σxx + σyy)/2 (in the plane x − y of
the membrane) and PN = −σzz (normal to the membrane),
both of which only depend on the position along the bilayer

normal, z. For bilayers in mechanical equilibrium, PN must be
constant in the system. With these two components of the
stress, we can further define the lateral pressure profile π(z) =
PL(z) − PN(z). This quantity exemplifies the connection
between molecular simulations and continuum theories, as its
first and second moments result in the bending modulus times
the spontaneous curvature and minus the Gaussian modulus
respectively.16 It has been hypothesized that the function of
membrane proteins can be directly modulated by changes in
the stress profile.16,17 The lateral pressure is also frequently
used to assess whether coarse-grained models reproduce the
mechanical properties of atomistic systems.18−20 Obtaining
experimental measurements of the local stress within a
membrane is very challenging, with few studies that have
used fluorescent probes to measure changes in the internal
stress.21,22

Molecular dynamics (MD) simulations are increasingly being
used to evaluate the stress tensor in lipid bilayers from
atomistic23−30 and coarse-grained19,20,27,30−32 models. To
calculate the local stress from MD, the pointwise expressions
resulting from the Irving and Kirkwood theory are spatially
averaged.11,12 While simulations of coarse-grained membranes
show constant PN profiles, several atomistic studies26,29,30 have
obtained nonconstant PN values for isotropic bilayers at
equilibrium. It has been suggested30,33−36 that this unphysical
result arises from bond constraints, since coarse-grained
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simulations treat bonds with harmonic potentials. This issue is
further complicated by the fact that many works in the field do
not report PL and PN separately.
A fundamental step in the Irving−Kirkwood−Noll (IKN)

theory for local stress calculations is the decomposition of the
forces acting on particles into pairwise contributions that satisfy
the weak law of action−reaction. For pair potentials, there is a
canonical pairwise decomposition.9 Furthermore, this decom-
position is central; that is, each pairwise force is aligned with
the vector connecting the pair of particles. However, force
decompositions are not unique, in general, and there is not a
clear notion of canonical decomposition for multibody
potentials. Different decompositions lead to different local
stresses, which differ by a divergence-free field.15,37 Specific
force decompositions of multibody interactions have been
proposed in the context of biomembrane simulations,14 which
are not central and may lead to nonsymmetric stress tensors.15

In contrast, it has been recently shown that central force
decompositions always exist and provide stress tensors that
satisfy the balance of angular momentum.15,37 Another aspect
that has brought confusion in the field is the treatment of
constraints, very common in molecular simulations, since these
are not addressed in theories of local stress9,14,15 but are
included in MD implementations of local stress calcula-
tions.32,38

Here, we note that for potentials with up to four-body
interactions, such as those used in biomolecular simulations,
there is a natural and unambiguous notion of central force
decomposition. Furthermore, since the Liouville equation
remains essentially unchanged in the presence of constraints,39

we argue that constraint forces admit a straightforward
treatment within the IKN theory. We implement the resulting
method within the Gromacs40 MD simulation package, make it
publicly available,41 and exercise it on different coarse-grained
and atomistic models of lipid bilayers. In addition to the central
force decomposition, we also include in our software
implementation a previously proposed force decomposition of
multibody potentials,14 and show that it produces significantly
different stress profiles in atomistic systems. By comparing our
results with a popular implementation of stress calculation in
biomolecular simulations,42 we highlight the importance of a
consistent treatment of constraints. Furthermore, we show that
the central decomposition of forces enables the exploration of
new and surprising features in the mechanical properties of
membranes, such as the large contribution of double bonds to
the overall stress profile.

■ THEORY
General Theory of the Local Stress. The idea of

obtaining pointwise continuum fields from the positions and
velocities of individual particles, as defined by expectation
values from nonequilibrium classical statistical mechanics, was
pioneered by Irving and Kirkwood.9 This theory was more
rigorously developed by Noll,10 resulting in the so-called
Irving−Kirkwood−Noll (IKN) procedure. Due to both the
statistical and the pointwise nature of the fields in the IKN
procedure, calculating them from atomistic simulations requires
that every point within the volume of the system be well
sampled, which is practically unfeasible. This difficulty was
independently overcome by Hardy et al.11,43 and Mur-
doch12,44,45 through the definition of new continuum fields as
spatial averages of the pointwise IKN fields. Similar ideas can
also be found in the work of Schofield and Henderson.13

Despite this long history, the theory of local stress
calculations from atomistic models is not fully settled,
particularly for multibody potentials. To appreciate this fact,
let us briefly outline part of the IKN procedure. A key step to
identify the potential component of the stress tensor before
spatial averaging, σ pt,V, is expressing the right-hand side of the
equation

∑σ δ= ⟨ − ⟩
α

α αx F r xdiv ( ) ( )Vpt,

(1)

in divergence form. Here, F α is the total force acting on particle
α, δ refers to the Dirac-delta distribution, and ⟨·⟩ denotes
statistical expectation. For pair-potentials, there is a canonical
decomposition of the forces acting on particles as
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From the antisymmetry property [A], one can resort to results
by Noll10,37 and express the right-hand side of eq 1 in
divergence form involving straight integration paths. Further-
more, from property [B], the resulting stress tensor is
symmetric, thereby satisfying the balance of angular momen-
tum of a simple continuum medium.
In MD simulations at equilibrium, the IKN pointwise stress

can be evaluated from time averages and further averaged
spatially, resulting in the so-called Hardy stress tensor
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where mα, r i
α, vi

α and f i
αβ are the masses, positions, velocities,

and pairwise forces at time-step i, and NT is the total number of
time-steps. The symbol ⊗ denotes the dyadic product (e.g., vi

α

⊗ vi
α is a second-order tensor). The stress has a kinetic

contribution, σ K(x), that stems from the flux of momentum
associated with the vibrational internal energy of the system,
and a potential contribution, σV(x), which accounts for the
internal forces between particles.15,37 From the expression for
σ V, it is clear that property [B] implies symmetry of the stress
tensor. The spatial averaging of these two quantities is
performed by the function w(x;y) supported in a domain Ωx
centered at x, which weights the contribution to the stress from
the particles located at y in Ωx. This weighting function must be
normalized, that is, ∫ Ωx

dy w(x;y) = 1. To evaluate σV(x), the
weight function must be integrated over the line segment
connecting particles α and β to account for their interaction,
which results in the bond function B(x;r i

α,r i
β) = ∫ s = 0

1 ds w(x;
(1− s)r i

α + sr i
β). The potential part of the stress σV(x) can be

interpreted as a time and space average of the interactions
crossing Ωx.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4008926 | J. Chem. Theory Comput. 2014, 10, 691−702692



In the limit of uniform weight over the entire volume of the
system V, and noting that ∑α,β(≠α)f

αβ ⊗ r αβ = −2∑αF
α ⊗ r α,

the Hardy stress takes the form of the virial stress

∑ ∑σ = − ⊗ + ⊗
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which is typically used in MD simulations to measure the total
pressure of the system.
Local Stress and Multibody Potentials. For multibody

potentials, the notion of canonical force decomposition is not
so clear. It can be shown that it is always possible to decompose
F α = ∑β(≠α) f

αβ such that properties [A] and [B] are satisfied,
which is referred to as a central force decomposition (CFD).15

Then, Noll’s procedure can be carried out and the resulting
stress tensor, which also follows from eq 3, is symmetric. In a
CFD, we have

∑ ∑ φ= =α
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αβ
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F f
r
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where |φαβ| is the magnitude of the force between α and β and
sign(φαβ) = ± 1 indicates whether the force is repulsive (−1) or
attractive (+1). A CFD can be theoretically defined as follows.
Due to the translational and rotational invariance of classical
mechanics, any interatomic potential, V({r α}), must only
depend on the relative distances between the particles of the
system; that is, there exists a function Ṽ({r αβ}) depending on
the distances between particles such that V({r α}) = Ṽ({r αβ}).
Under mild technical conditions on Ṽ({r αβ}), generally
satisfied for the potentials in MD simulations, a CFD follows
from15,37

φ = ∂ ̃

∂
αβ

αβ

αβ
V r

r
({ })

(6)

Since the representation Ṽ is not unique, the CFD is not
unique either. This fact can be appreciated by counting
equations and unknowns. For a multibody interaction involving
N ≥ 3 particles, the independent components of the forces (N
forces satisfying conservation of linear and angular momenta)
lead to 3N − 6 equations. On the other hand, the number of
pairwise central terms is N(N − 1)/2. Although in general we
have more unknowns than equations, for N = 3 or N = 4, the
number of equations and unknowns coincide, and therefore,
the CFD is unique. Thus, for potentials with up to four-body
interactions (e.g., dihedral potentials), there is a reasonable
notion of a canonical CFD, which considers the unique central
decomposition of each additive part of the potential separately.
When the CFD is not unique, each decomposition leads to a

different stress tensor. Nevertheless, recalling eq 1, these stress
fields differ by a divergence-free field and div σ(x) is uniquely
defined. In fact, other authors have proposed force decom-
positions that are not central. For instance, building on a
different re-elaboration of the Irving and Kirkwood theory,13

Goetz and Lipowsky14 proposed a method for stress calculation
essentially equivalent to eq 3 with the decomposition
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where M labels potential contributions VM (e.g., two-, three-,
four-body potentials) involving particles α and β and nM
denotes the number of particles involved in VM. While this

decomposition, which we refer to as GLD, satisfies property
[A], it does not satisfy [B] in general, and therefore may lead to
nonsymmetric tensor fields.15 This makes it difficult to interpret
such a stress, which we denote as σ GL, in terms of continuum
mechanics of simple bodies. However, as discussed above, σ GL

and a stress tensor based on a CFD differ by a divergence-free
field. For pair potentials, both CFD and GLD recover the IKN
theory; that is, both decompositions result in the same stress
tensor.

Treatment of Constraints. Bonds in MD simulations are
often treated with rigid constraints to increase the integration
time-step and improve the computational efficiency. Common
constraint algorithms include LINCS,46 SHAKE,47 and
SETTLE.48 It has been suggested that the treatment of
constraints in stress calculation algorithms is responsible for
reported unphysical nonuniform pressures perpendicular to a
bilayer in equilibrium,30,33−36 as further discussed in the next
section. Although previous works32,33 have suggested imple-
menting bond constraints in the natural way we advocate next,
to our knowledge, a theoretical justification in the theory of
local stress calculations is lacking. Here, we argue that
constraints admit a straightforward treatment within the IKN
procedure by noting that Liouville’s equation, a cornerstone in
Irving and Kirkwood’s theory, remains essentially unchanged in
the presence of constraints.39 Considering Q constraints
denoted by Cq({r

α}) = 0, Liouville’s equation governing the
evolution of the probability distribution of the system takes the
form

where F q
α = λq∂Cq/∂r

α are the constraint forces and λq are the
corresponding Lagrange multipliers provided by the constraint
algorithms. Based on this, the IKN procedure outlined earlier
can be directly applied to the constrained system, where F α

includes now the constraint forces. Note that a given particle
may be subject to multiple constraints simultaneously, e.g. a
carbon atom bonded to four other atoms. Following the
common approach of decomposing separately each additive
contribution to F α, and noting that a bond constraint Cq = rαβ

− d = 0 between particles α and β depends only on their
distance, the corresponding constraint forces admit a trivial
decomposition F q

α = f q
αβ = λqr

αβ/r αβ satisfying [A] and [B].
A recent report38 has approached the treatment of

constraints in stress calculations considering the long-range
origin of these interactions. It is argued that, since the
constraint force on a pair of particles α and β depends in
general on the positions of all other particles interacting with α
and β, the GLD14 (see eq 7) suggests that this constraint force
should be decomposed into many possibly long-ranged
contributions. Given the phenomenal complexity of this
procedure, an approximation focusing on Coulomb interactions
has been proposed.38 While this approach may yield a
legitimate force decomposition satisfying [A], such a
decomposition of bond constraint forces may seem unreason-
able from the following perspective. The constrained dynamics
can be approximated by replacing bond constraints by
harmonic potentials of high stiffness, which in the Irving and
Kirkwood procedure lead to individual pair contributions in eq
3, as in our treatment of bond constraints. Physically, it is not
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clear why, when passing to the limit of infinite stiffness, this
force should spread into many nonlocal interactions.
Stress in Lipid Bilayers. The stress tensor provides precise

information about the internal forces of the system seen as a
continuum. Isolating a subdomain bounded by an internal
surface Γ, the force per unit area exerted by the rest of the
system at a point x in Γ, with outward normal n(x), can be
computed as t(x) = σ(x)·n(x), referred to as the traction
vector. The traction is generally not aligned with n. Since by
definition the Hardy stress tensor with a CFD (property [B]) is
symmetric, it can be diagonalized in an orthonormal basis. For a
transversely isotropic system such as a planar lipid bilayer in
water, this basis of eigenvectors is given by any two orthogonal
vectors in the plane of the bilayer (e.g., ex and ey) and a vector
normal to it along z (e.g., ez). Along the eigenvectors, the
traction is aligned with the normal, for example, tx = σ(x)·ex =
σxx ex where σxx is an eigenvalue of the stress tensor-the
principal stress along x. By symmetry of a planar bilayer and for
a system in equilibrium, σxx = σyy, and the three principal
stresses depend only on z. Therefore, the stress tensor is
commonly summarized by PL(z) = −(σxx + σyy)/2, which can
be interpreted as the negative of the in-plane traction, and
PN(z) = −σzz, the negative of the normal traction. Positive
values of these profiles reflect repulsive interactions.
For a system in equilibrium and in the absence of external

forces, div σ = 0. Specializing this equation for a bilayer, we find
that dPN/dz = 0, and therefore, the normal stress profile should
be constant. This physical requirement has been invoked to
assess the quality of simulation protocols49 or stress calculation
methods.50 Its violation in atomistic simulations of lipid
bilayers26,29,30,33 has sparkled some controversy about the
role of constraints, as discussed in the previous section.
Although in general the stress tensor stemming from the

GLD is not symmetric, when particularized to planar fluid
bilayers in equilibrium it is still a diagonal tensor with only z
dependence due to the symmetry of the system. As discussed
earlier, div(σ − σ GL) = 0, which implies that P N

GL(z) should be
constant, but remarkably does not pose any constraint on
P L(z) − P L

GL(z). Thus, in principle we can expect significantly
different lateral stress profiles when following the IKN
procedure with CFD or GLD. This troubling observation
places a strong emphasis on the physics behind force
decompositions, particularly for systems with less symmetry
such as a bent bilayer or a bilayer with a transmembrane protein
where presumably σ GL is not symmetric.
We end this section by noting that the individual

contribution to PN of all additive components of the potential
(e.g., bonds, angles, dihedrals, etc.) are invariant with respect to
the method of decomposition. For instance, the contribution of
any given dihedral or angle interaction to PN is the same with
CFD or GLD, while the contribution to the lateral stress PL
may drastically depend on the method of decomposition. To
understand this fact, recall that for pair potentials (bonds,
constraints, van der Waals, and coulomb) both CFD and GLD
yield the same contribution to the stress tensor. Then, PN
decomposed with CFD or GLD for the same ensemble takes
the form
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Due to mechanical equilibrium, PN must be constant and equal
to the pressure of the system in both calculations. Therefore,
the multibody (m ≥ 3) potential contributions to PN must be
equal in GFD and CFD in order to balance the pair
contributions (m = 2). This argument can be extended to
each multibody contribution separately, since in the IKN
procedure each additive component of the potential can be
legitimately decomposed with a different method.

■ METHODS
Local Stress Implementation. Here, we implement a local

stress calculation in MD simulations at equilibrium through the
Hardy−Murdoch procedure given by eq 3. We discretize the
simulation volume into a three-dimensional rectangular grid of
cell size (ax, ay, az), and compute the stress tensor in each node
of the grid x(i,j,k). The pointwise contributions are spatially
averaged with trilinear weight functions of the form
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which are centered at each x(i,j,k) and whose support is given by
the eight grid cells adjacent to it (see Figure 1 for an illustration
in 2D). Common implementations of the Hardy stress in MD
simulations use constant weights within each cell,24,32,51

resulting in noisier and discontinuous stress fields at the
edges of the cells. Broader and smoother weight functions such
as higher order B-splines or long-range mollifying functions37,44

produce smoother stress fields but can excessively smear local
features and increase the computational cost. This issue is not
minor, since the computational time required to calculate the
local stress can be comparable to the time to simulate the
system. We also note that the smaller the grid cells are, the
longer the MD simulations need to be to adequately sample
each local cell. In our experience, the trilinear weighting
functions provide a good compromise of smoothness and
efficiency. The bond function B(x(i,j,k);r i

α,r i
β) can be easily

calculated analytically by integrating w(x(i,j,k);y) along the
interaction lines crossing the grid cell.
In addition to the spatial averaging, we must also decompose

the forces resulting from multibody interactions, such as angle
and dihedral potentials. In biomolecular simulations, the total
potential energy is commonly formulated as an additive
decomposition of two-, three- and four-body potentials V =
∑aVa,2 +∑bVb,3 +∑cVc,4. As discussed in the Theory section, it
is natural to decompose each of these contributions
individually, resulting in a unique CFD. Algebraically, the
CFD of a N−body interaction, Va,N with N = 3,4, can be
obtained by solving the overdetermined system of equations

∑ φ = −
∂
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=
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For N = 3, there are 3 unknowns φa,N
αβ and 9 equations, see

Figure 2 for an illustration. For N = 4, there are 6 unknowns
and 12 equations. The existence of the CFD guarantees that
this system is compatible. The invariance constraints on Va,N,

∑ ∑= × =
α

α

α

α αF F r0, 0a N a N, ,
(12)
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are compatibility equations for solvability of the system.
Numerically, the system of equations in eq 11 can be solved
by generic linear algebra algorithms, such as Gaussian
elimination with partial pivoting, or by noting the special
form of the equations as implemented in our code.41 As argued
in the Theory section, forces from two-body interactions and
from constraints are trivially decomposed into a CFD. Table 1
provides a summary of the types of potentials present in
biomolecular simulations and the properties of the CFD.
As mentioned earlier, the CFD is unique for up to four-body

interactions. In fact, this statement holds only when the
particles are not collinear (N = 3) or coplanar (N = 4). In
practice, this is not an issue. Most bending and dihedral angle
potentials have extrema at 0 and π, and therefore, the resulting
forces vanish and do not need to be decomposed. This may not
be the case for restraining angle potentials, which nevertheless
limit the accessible angles away from the pathological angles
under normal simulation conditions.
In addition to the method for local stress calculation

described above, which we refer to as current implementation
(CFD), we consider two additional methods. On the one hand,
we implement the GLD for three- and four-body potentials
instead of the CFD, but stick to our treatment of constraints,

which we call current implementation (GLD). We recall that the
theory behind the GLD does not explicitly address constraints,
although constraints have been included in previous
implementations, along the lines proposed here32 or with
different approaches.27,38 On the other hand, as a reference to
compare our results, we compute stress profiles with a custom
version of Gromacs,42 implementing an algorithm for local
stress calculation.32 This popular implementation, which we
refer to as reference implementation, is based on GLD,
heuristically decomposes SETTLE constraint forces, and
makes reasonable but drastic approximations in the treatment
of three- and four-body interactions. Except for SETTLE
constraints, bond constraints are treated in the same way in the
current and in the reference implementations. We have made
publicly available the current implementation (CFD and GLD)41

as a custom version of the Gromacs software (based on version
4.5.5).
It is worth noting that the SETTLE algorithm aggregates

three bond constraints for a water molecule and outputs the
sum of the three constraint forces on each particle but not the
individual Lagrange multipliers. It is easy to recover the three
Lagrange multipliers,48 for instance, performing a CFD on the
SETTLE forces as if it was a three-body potential. In the
current implementation, we adopt this method to identify the
Lagrange multipliers of SETTLE constraints both for CFD and
GLD and then follow the standard treatment of constraints
described in the Theory section.

Figure 1. Space discretization into a grid. The pointwise stress tensor
is spatially averaged and distributed into regularly spaced grid points
with a trilinear weighting function supported on the adjacent cells. The
contour plot illustrates the weighting function in 2D. The contribution
to the stress tensor at the grid point (i,j) for two interacting particles α
and β is weighted by the bond function, B(x(i,j);rα,rβ), which is the
integral of the weight function, w(x(i,j),y), along the line segment
connecting α and β. Because of the support of w(x(i,j),y), only the solid
part of the segment contributes to B(x(i,j);rα,rβ).

Figure 2. Central force decomposition for a three-body potential. In a
multibody interaction such as an angle potential, the net forces, F α, on
the interacting particles must be decomposed into pairwise central
forces f αβ = φαβr ̂ αβ, with r ̂ αβ = r αβ/r αβ. The three unknowns in the
CFD, φαβ, can be obtained from the solvable overdetermined linear
system F 1 = φ12r ̂ 12 + φ13r ̂ 13, F 2 = φ12r ̂ 12 + φ23r ̂ 23, F 3 = φ13r ̂ 13 +
φ23r ̂ 23.

Table 1. Number of Particles Involved in the Main MD
Potentials for Biomolecular Simulations

potential particles pairwise terms

Coulomb 2 1
van der Waals 2 1
angles 3 3
dihedrals 4 6
bond constraints 2 1
harmonic bonds 2 1
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Simulated Systems and Analysis. All atomistic and
coarse-grained simulations were conducted with the Gromacs
4.5.5 simulation package40,52 at the Barcelona Supercomputing
Center. Coarse-grained simulations were performed with the
unmodified MARTINI53,54 force-field (FF) and a recently
developed FF known as BMW-MARTINI,55 based on
MARTINI and reparametrized for usage with the big multipole
water (BMW) model.56 All coarse-grained simulations are
composed of 200 POPE lipids (1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphoethanolamine) and 3000 coarse-grained water
molecules (equivalent to 12000 atomistic waters). Pressure
was semi-isotropically coupled with a Parrinello−Rahman
barostat57 at 1 atm, and the temperature was held constant at
37 °C with a Nose−́Hoover thermostat.58 MARTINI
simulations were performed with a switched Lennard-Jones
potential (the switch function is applied at a radius of 0.9 nm
and the potential is zero at a radius of 1.2 nm), and a shifted
Coulombic potential (cutoff radius of 1.2 nm) with a relative
dielectric constant εr = 15 for explicit screening. The
integration time step for this model is 40 fs. The Lennard-
Jones interactions for BMW-MARTINI systems were calculated
in the same way as MARTINI, except for water−water
interactions, where the switch function is applied at a radius
of 1.2 nm and the potential is zero at a radius of 1.4 nm.
Electrostatic interactions for this model were calculated using a
reaction-field treatment59 with a cutoff radius of 1.4 nm and a
dielectric constant ϵrf = 74. In BMW-MARTINI simulations,
the time step was 2 fs for flexible water and 20 fs for rigid water.
Atomistic bilayers were simulated with the Gromos 43A1-

S360 FF or with the Berger61 FF obtained from the Web site of
the Tieleman group,62 with additional modifications for the
dihedral angles near double bonds following the work of Bachar
et al.63 For simulations with the G43A1-S3 FF, Lennard-Jones
forces where calculated using a twin-range cutoff scheme with
interactions within 1.0 nm calculated at every time step and
interactions between 1.0 and 1.6 nm only updated every 5 time
steps. Lennard-Jones forces for simulations with the Berger FF
were calculated with a plain cutoff of 1.0 nm. Long-range
electrostatic interactions were computed using the particle-
mesh Ewald (PME) method with a real-space cutoff of 1.0 nm
and a Fourier grid spacing of 0.15 nm. Pressure was semi-
isotropically coupled with a Parrinello−Rahman barostat at 1
atm, and the temperature was held constant at 37 °C for both
POPE and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-
choline) and at 50 °C for DPPC (1,2-dipalmitoyl-sn-glycero-3-
phosphocholine) with a Nose−́Hoover thermostat. All atom-
istic systems are composed of 200 lipids and 12000 water

molecules (SPC/E64 and SPC65 for the G43A1-S3 and Berger
FF respectively). The integration time step for the atomistic
simulations was 2 fs. A summary of all the coarse-grained and
atomistic simulated systems is given in Table 2.
All simulated systems except those with the Berger FF were

run for a 400 ns equilibration period, followed by a 100 ns data
collection period where the positions and velocities were stored
every 5 ps. To reduce computational costs, the initial
configurations for the systems simulated with the Berger FF
were taken from the end of the equilibration period with the
G43A1-S3 FF, and re-equilibrated for a 100 ns period followed
by 100 ns of data collection. The stored trajectory was then
analyzed to produce stress profiles with the current
implementation (CFD), the current implementation (GLD), and
the reference implementation (GLD). Given that the implemen-
tation presented here does not take into account the
electrostatic contributions computed in reciprocal space, the
analysis for atomistic systems simulated with the PME method
was carried out only considering Coulomb forces up to a cutoff
radius of 2.2 nm. The accuracy of this common treatment is
examined in Appendix A.

■ RESULTS
Effects of Force Decomposition. To test the effect of the

force decomposition, either CFD or GLD, and the treatment of
bond constraints, we perform local stress calculations on lipid
membranes modeled with different interaction potentials. We
consider three different coarse-grained models: conventional
MARTINI with one-bead water particles53,54 (CG), reparame-
trized MARTINI for the big multipole water (BMW) model55

with rigid bond constraints for water (CG-BMW-RW), and
BMW-MARTINI with harmonic bonds for water (CG-BMW-
FW). In addition to these coarse-grained models, we also
consider the atomistic G43A1-S360 model. Although compar-
ison between different atomistic force-fields is beyond the
scope of this paper, we include in Appendix B results obtained
from simulations of DPPC and POPC simulated with the
Berger FF for completeness and easier comparison with
previous local stress results. Figure 3A shows the structure of
a coarse-grained POPE lipid with the three types of solvents,
and Figure 3B shows the equivalent atomistic lipid structure.
Stress profiles for the coarse-grained and atomistic bilayers

calculated with the current (both with CFD and GLD) and the
reference implementations (see Methods) are shown in Figure
4. The lateral component of the stress PL(z) = −(σxx + σyy)/2 is
shown in black and the normal component PN(z) = −σzz is
shown in blue. This same color-coding is used in the

Table 2. Summary of Simulated Systems

system FF lipids electrostatics water model lipid bonding solvent bonding dihedrals

CG MARTINI 200 POPE reaction field MARTINI Ha no
rc = 1.2 nm

CG-BMW-RW BMW-MARTINI 200 POPE reaction field BMW H Cb no
rc = 1.4 nm

CG-BMW-FW BMW-MARTINI 200 POPE reaction field BMW H H no
rc = 1.4 nm

POPE-PME G43A1-S3 200 POPE PME SPC/E C C yes
POPC-PME G43A1-S3 200 POPC PME SPC/E C C yes
DPPC-PME G43A1-S3 200 DPPC PME SPC/E C C yes
POPC-PMEB Berger 200 POPC PME SPC C C yes
DPPC-PMEB Berger 200 DPPC PME SPC C C yes

aH: Harmonic. bC: Constraints.
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subsequent figures. In the first model, CG (Figure 4A), all
forces are pairwise central except for those that originate from
three-body angle potentials in the lipid tails. Not surprisingly,
we only observe minimal variations between CFD and GLD
located at the hydrophobic core. As expected from mechanical
equilibrium, PN is constant across the simulation box in all
cases.

We move now to a more complex model (BMW-MARTINI)
with constraints. In this model, a coarse-grained water molecule
(representing 4 real waters) is composed of three charged
particles, resembling the structure of real water. Similarly to
MARTINI, the bonds in the lipid molecules are treated with
harmonic potentials, but the bonds in the BMW coarse-grained
water are treated with rigid constraints to improve computa-
tional efficiency. Water constraints are usually enforced with the
SETTLE48 algorithm in MD simulations. Figure 4B shows the
stress profiles for the CG-BMW-RW system. As before, the
differences between the two flavors of the current implementa-
tion are minimal and located at the hydrophobic core, and with
our treatment of constraints PN is flat. In contrast, the reference
implementation produces a PN profile with strong unphysical
variations at the lipid−water interface, which also distorts the
PL profile in this region, presumably as a result of its heuristic
treatment of SETTLE constraints. To confirm this explanation
for the spurious PN profile in the reference implementation, we
analyze a computationally less efficient CG-BMW-FW system
with flexible water molecules (Figure 4C). For this system, the
results from the current and reference implementations are very
similar and show a constant PN across the simulation box. Note
that PL values for the CG-BMW-RW and CG-BMW-FW
bilayers (Figure 4,B and C) are qualitatively very similar, yet
because of differences in the compressibility of the systems
depending on how water is modeled, the magnitudes of the
peaks and their location along z are different.
Atomistic bilayer simulations have two multibody potentials

that must be decomposed: angles and dihedrals. Additionally,
these models resort to bond constraints both in water and in

Figure 3. Representation of the different lipid models considered here.
(A) CG lipids such as POPE are simulated with harmonic bonds and
three different types of water molecules: one bead CG water, BMW
water with harmonic bonds, and BMW water with rigid bond
constraints. (B) Atomistic lipids and water molecules are simulated
with rigid bond constraints.

Figure 4. Importance of the force decomposition. Stress profiles for coarse-grained and atomistic bilayers calculated with the current (both with
CFD and GLD) and the reference implementations. (A) POPE CG bilayer with one-bead coarse-grained water. (B) POPE CG-BMW-RW bilayer
with BMW water molecules simulated with rigid constraints. (C) POPE CG-BMW-FW bilayer with BMW water molecules simulated with harmonic
bonds. (D) Atomistic POPE bilayer. (E) Atomistic DPPC bilayer. The lateral component of the stress PL(z) = −(σxx + σyy)/2 is shown in black and
the normal component PN(z) = −σzz is shown in blue. The gray-filled curves in the atomistic profiles show the location of the hydrophobic−water
interface, identified from the overlap of the density profiles of water and lipid tails, ρwater(z)·ρtails(z), in arbitrary units as a guide to the reader.
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the lipid molecules, leading to constraint forces that must also
be properly treated (see Theory). Stress profiles for the
atomistic POPE and DPPC bilayers are shown in Figure 4,
parts D and E, respectively.
These two lipids differ both in the headgroup and tail

regions. POPE has one double bond on the 18 carbon chain,
and DPPC has two fully saturated chains. Also, in the PE
headgroup the nitrogen atom is bonded to three hydrogens,
while in PC the nitrogen is bonded to three methyl groups. As
before, the reference implementation applied to atomistic
systems produces unphysically large variations in PN, with
magnitudes larger than PL, near the lipid−water interface as a
result of the inadequate treatment of the water constraints. The
current implementation corrects this anomaly, both with CFD
and GLD. The lateral profiles PL resulting from the GLD and
obtained from the reference and the current implementations
are quite similar, except for some variations at the lipid−water
interface due to constraints. In contrast, the current
implementation with CFD exhibits remarkably different PL
profiles for both POPE and DPPC, in terms of the magnitude
and location of the peaks across the bilayer. One of the most
striking features of the CFD lateral profile for POPE, absent in
the GLD counterpart, is the presence of large positive peaks in
the middle of each leaflet, which are ten times larger in
magnitude than the positive peaks in the hydrophobic core of
DPPC. The lateral profile in the DPPC bilayer analyzed with
CFD and GLD significantly differ in the lipid−water interface
and in the hydrophobic core. These dramatic differences in PL
should be attributed to the decomposition of multibody
potentials.

Individual Contributions to the Stress. To further
investigate the nature of the stress profiles and focusing on the
CFD, we separate the kinetic and potential contributions for
the coarse-grained (CG and CG-BMW-RW) and atomistic
models of POPE, as shown in Figure 5. Thermodynamic
equilibrium in these models arises from the sum of various
contributions, and therefore, it is expected that the partial stress
profiles of each individual interaction may not display similar
behavior when compared across models, for example, atomistic
simulations include potentials that are not considered in the
CG systems and change the equilibrium conditions. The
treatment of water in the three models is one of the biggest
factors influencing the behavior of the individual contributions
to the stress.
We first focus on the CG model, which contains the least

number of interaction potentials (Figure 5A). We check that for
this unconstrained system, the kinetic part of the stress locally
satisfies the equipartition theorem and therefore P L

K(z) =
P N

K(z) = ρ(z)kBT, where ρ(z) is the particle density profile.
The water beads in the CG model are not charged and
therefore cannot reproduce the entropic or enthalpic behavior
of real water, which are at the origin of the hydrophobic effect
keeping the bilayer in place. This makes it necessary to include
attractive van der Waals interactions at the lipid headgroups
and in the water beads to preserve the integrity of the bilayer
and the cohesion of fluid water. Therefore, van der Waals forces
result in negative values in both PL and PN. The lipid
headgroups also present electrostatic interactions that lead to
net cohesive stresses in this region. The angle contribution
presents a repulsive component in PN and an attractive

Figure 5. Individual contributions to the total stress of coarse-grained and atomistic membrane simulations. The lateral profile PL is represented by
black curves, while PN is plotted in blue. The translucent image in the background of each plot depicts the lipid bilayer (tanned/gray atoms) and the
water (light blue/red atoms) regions to guide the reader. (A) shows the contributions for the MARTINI CG POPE system, (B) shows those of the
BMW-MARTINI (CG-BMW-RW) POPE with rigid water (SETTLE), and (C) shows the contributions of the atomistic POPE-PME with rigid lipid
(LINCS) and water (SETTLE) bonds. While this last system was simulated with long-range PME electrostatics, the Coulomb contribution to the
stress for this system was computed using a plain cutoff with a radius of 2.2 nm (see Methods).
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component in PL, which result from the vertical orientation of
the lipids as well as from their packing within the membrane.
The bonding contribution to both PL and PN is positive due to
the reduction, on average, of bond lengths within the packed
lipids.
In the more sophisticated CG-BMW-RW (Figure 5B), the

different water treatment introduces major changes in several
partial profiles when compared to the CG model. These
changes are located in the bulk water and at the lipid−water
interface, since the two models are very similar in the
hydrophobic core. As expected, the kinetic contribution
increases with the degrees of freedom in water. The Coulomb
interactions between water molecules, which result in cohesive
intermolecular forces due to the dipole−dipole interactions,
completely changes the role of van der Waals forces. In this
model, van der Waals forces in water mostly result in collisions
that generate high repulsive stresses. On the other hand, the
SETTLE constraints provide the intramolecular forces that
keep the water structure fixed, resulting in cohesive stresses. At
the lipid−water interface, where the particle density is highest
in the bilayer, the bond contribution presents an attractive
stress to compensate for the higher rate of van der Waals
collisions.
The individual contributions in the atomistic system (Figure

5C) are qualitatively similar to those in the CG-BMW-RW
model due to the analogous treatment of water, although the
stress magnitudes are significantly different. Bonding forces,
which are treated with LINCS constraints in this model, result
in both attractive and repulsive stresses in the headgroup
region. The positive peaks stem from the repulsive constraint
forces that balance the attractive electrostatic interaction
between the phosphate and ethanolamine groups. The CG
and CG-BMW-RW models do not present this feature as these
two charged groups are directly connected by a bond and
therefore the electrostatic force is excluded.
Critical Role of Dihedral Contributions to the Stress

Profile. In the atomistic model of POPE, the dihedral
contributions to PL displays large positive and negative values
as shown in Figure 5C (rightmost panel). In fact, as emphasized
in Figure 6A, this dihedral contribution nearly coincides with
the total lateral stress profile within the hydrophobic core, and
therefore the other contributions nearly balance each other in
this region. As suggested by the excellent correlation between
the location of the double bond and the large positive peaks in
each leaflet of POPE (see Figure 6A), we attribute this feature
of the lateral stress profile to the dihedral potential that
restraints the planar geometry of this cis double bond. The
potentials used to restrain the geometry of a double bond are
significantly stiffer compared to other dihedral interactions. We
present a similar comparison of the dihedral contribution versus
the total lateral profile for POPC, see Figure 6B, differing from
POPE in the headgroup but also exhibiting a double bond in
the tails. Again, the contribution of dihedral forces over-
whelmingly dominates the PL profile in the hydrophobic core.
We compare this system with DPPC, see Figure 6C, which
differs from POPC in that it does not have double bonds. This
system shows much smaller positive peaks in the hydrophobic
core, and the total pressure profile does not closely follow the
dihedral contribution, which is nevertheless significant.
Comparison of Figure 6B and C suggests that double bonds
in the lipid tails strongly affect the way stresses are distributed
across the bilayer. This is consistent with experimental
observations showing that the bending elasticity modulus of a

fluid bilayer decreases with the number of unsaturations in the
lipid tails, while the lateral area compressibility practically
remains unchanged.66,67 The GLD does not capture the effect
of double bonds in PL (see Figure 4D) and therefore misses the
strong mechanical effect of dihedrals in the hydrophobic core
predicted by CFD stress calculations. Also, note that the PL
obtained by the CFD results in reduced or negative stresses in
the bilayer midplane, consistent with the reduced density of the
system here, while the GLD PL shows increased stresses for
atomistic models of both POPE and DPPC (Figure 4D and E)
in this region.
While the effects of the lipid unsaturations clearly dominate

the stress profile differences between these systems, there are
also smaller variations in the headgroup region. In all three
systems shown in Figure 6, there is a clear correlation between
the large negative peak and the hydrophobic−water interface as
expected from their unfavorable interaction, which induces a
cohesive stress to minimize the exposure of the lipid tails to the
water. In the headgroup region, the repulsion between the
charged atoms (e.g., phosphorus, see cyan density plots in
Figure 6) results in a positive peak.

■ SUMMARY AND DISCUSSION
We have presented an implementation of the local stress
calculation from MD simulations of atomistic and coarse-
grained biomembranes that consistently treats constraints and
made it publicly available.41 As a result of our treatment of
bond constraints and in contrast with previous implementa-
tions, we obtain flat profiles of the stress normal to the
membrane as required in equilibrium, for both atomistic and
coarse-grained systems. Furthermore, the lateral pressure
profile obtained with the current implementation is devoid of
artifacts at the lipid−water interface associated with an
improper treatment of constraints. By implementing two
different force decompositions of multibody interactions in an
Irving and Kirkwood procedure,9 one based on the central force
decomposition (CFD)15,37 and a another one proposed by

Figure 6. Dihedral contribution to the lateral stress profile PL (red
curves) compared to the total PL profile (black curves), in atomistic
POPE (A), POPC (B), and DPPC (C) bilayers. Density plots (filled
areas, in arbitrary units) of particular lipid components are included for
reference. The hydrophobic−water interface is identified from the
overlap of water and lipid tail densities, ρwater(z)·ρtails(z).
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Goetz and Lipowsky (GLD),14 we highlight the ambiguity of
lateral stress profiles, which are routinely used to understand
bilayer mechanics and to parametrize coarse-grained force
fields. We find that CFD and GLD lead to very different lateral
stress profiles in atomistic models, and favor the CFD, which
produces symmetric stresses by construction and can be seen as
a canonical decomposition for potentials with up to four-body
interactions such as those used in biomolecular simulations.
The CFD lateral stress profiles are very sensitive to the bilayer
chemical composition (POPE, POPC, or DPPC) and are
strongly determined by dihedral interactions, which become
critical in the presence of double bonds as suggested by
experimental data.
We find that coarse-grained models with simplified water

treatments produce individual stress contributions very differ-
ent from those obtained from atomistic models. Coarse-grained
systems with more realistic water models more closely mimic
the atomistic system, although they ignore important effects
due for instance to double bonds, and underestimate the
magnitude of the stresses. Detailed stress calculations such as
those presented here may help parametrize coarse-grained force
fields, or suggest consistent methods to rescale coarse-grained
stress profiles for quantitative estimations.
The unsettling subjectivity of lateral stress profiles in bilayer

membranes calls for a close examination of the physical
grounds of different force decompositions for multibody
potentials,15 although the automatic symmetry of stresses
based on CFD is a solid argument in favor of it. Lateral stress
profiles stemming from different force decompositions may be
tested against global observables. For instance, elastic properties
computed from continuum fields should agree with their global
thermodynamic evaluation, although in practice such compar-
isons are challenging and have not been satisfying.68 The
chemical specificity of the CFD stress profiles, particularly the
strong role of double bonds in the oleoyl chain, suggests a more
systematic exploration with MD of the relationship between the
chemical structure of lipids and the mechanical bilayer
properties, that may be compared with the experimental
record. We are currently applying the methodology introduced
here to quantitatively understand the influence of sterols in the
mechanical behavior of bilayer membranes.

■ APPENDIX A. CONTRIBUTIONS FROM
LONG-RANGE ELECTROSTATIC INTERACTIONS

The electrostatic contributions to the stress from systems
simulated with long-range PME (or other reciprocal space
method) is only approximately calculated as our implementa-
tion does not include these forces currently. A common
method for including reciprocal space electrostatic interactions
is by means of the Harasima contour69 as detailed by Sonne et
al.25 However, this method divides the simulation box into slabs
(spanning the membrane plane), where the total long-range
electrostatic contributions are calculated. As such, the Harasima
contour method only computes stress profiles and not the 3D
tensor over the simulation volume. Furthermore, it is not clear
whether this method is compatible with the CFD stress
calculation formulated by Admal and Tadmor.15 It may be
possible in a future version of our implementation to include
PME contributions into the local stress calculation following
the work of Hatch et al.70

For systems simulated with PME, we follow the usual
procedure and compute the stress including only electrostatic
forces up to a given cutoff radius. To investigate the effect of
this approximation, we examine the dependence of the stress
profile of the atomistic POPE-PME system with respect to the
cutoff radius, see Figure 7. We observe that the stress profiles
show little difference beyond a cutoff of 2.2 nm, after which the
computational cost increases very rapidly. A very stringent test
of convergence of the stress profiles with respect to cutoff
radius is to integrate the local stresses and compare the
resultant quantity with the overall system pressure controlled
by the barostat, which should coincide if electrostatic forces
were consistently treated. We find that the integrated overall
system pressure converges very slowly to 1 bar. These tests
support using a cutoff of 2.2 nm to compute the electrostatic
components of the stress profiles, as done in the manuscript but
also suggest the need for a self-consistent treatment for accurate
estimation of global properties from stress profiles.

■ APPENDIX B. STRESS PROFILES FOR LIPIDS
SIMULATED WITH THE BERGER FORCE-FIELD

Although there are many available force-fields for the
simulations of lipid bilayers, a large number of previous
works have used the so-called Berger FF. For completeness and
easier comparison of our local stress implementation, we

Figure 7. Effect of cutoff in the electrostatic contribution to the stress profiles for a POPE bilayer simulated with long-range PME contributions.
Given that the forces from PME are not included consistently in the present implementation of the local stress calculation, only Coulomb
interactions up to a given radius contribute to the analysis. The figure shows the dependence on the plain cutoff radius (1.2−2.6 nm) of PL (A), PN
(B), and the overall system pressure (C).
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include stress profiles of POPC (Figure 8, A and B) and DPPC
(Figure 8, C and D) membranes simulated with the Berger FF

and analyzed with both CFD and GLD. The harmonic
potential used to restrain the double bond dihedral in the
Berger FF (as parametrized in the GROMOS87 FF71) has a
significantly softer well compared to the periodic potential used
in the G43A1-S3 (as parametrized by Smith and Paul72), and
therefore, the positive peaks in the middle of each leaflet of
POPC, when using CFD (Figure 8A), in the Berger FF are
much smaller compared to those seen in the G43A1-S3 FF
(Figure 6B). The CFD results for DPPC are qualitatively very
similar for the Berger (Figure 8C) and G43A1-S3 FF (Figure
6).
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